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ABSTRACT 
 

LINKING LAND USE, CLIMATE, AND COASTAL ECOSYSTEMS: A 
WATERSHED PERSPECTIVE FOR A CHANGING SOUTH CAROLINA 

COAST 
A thesis submitted in partial fulfillment of the requirements for the degree 

 
MASTER OF SCIENCE 

 
in 
 

ENVIRONMENTAL AND SUSTAINABILITY STUDIES 
 

by 
 

KEVIN LLOYD HILL 
DECEMBER 2020 

 
at 
 

THE GRADUATE SCHOOL OF THE UNIVERSITY OF CHARLESTON, 
SOUTH CAROLINA AT THE COLLEGE OF CHARLESTON 

 
South Carolina’s growing population has resulted in widespread changes in land use. Urbanized 

watersheds lead to increases in stormwater runoff and the transport of contaminants to 

downstream aquatic ecosystems. This data synthesis project explored long-term and large-scale 

environmental datasets to construct a history of habitat quality in South Carolina’s estuaries over 

the last 20 years. Previous studies in coastal South Carolina have demonstrated connections 

between developed watersheds and degraded, downstream aquatic habitats. Data on water quality, 

sediment contamination, and biological communities (macroinvertebrate infauna and nekton) 

were analyzed in relation to upstream watershed characteristics such as impervious surface cover 

along a gradient of development intensities. These relationships were further explored within the 

larger context of a changing climate. By linking spatially explicit temperature, precipitation, and 

landcover data with measures of habitat quality from 1999-2018, this project used past 

associations among these factors to predict impacts of projected changes in climate and 

development on coastal ecosystems. Understanding this climate-watershed connection will aid 

coastal managers in planning for future changes to coastal ecosystems and communities. 
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CHAPTER 1:  INTRODUCTION 

 

 South Carolina’s coastal landscape is defined by its tidal wetlands and estuaries. 

Nearly 140,000 hectares of salt marsh line the South Carolina coast – more than any other 

state on the Atlantic (SCDNR, 2012). Formed at the intersection of fresh and saltwater 

systems, estuaries are some of the most productive ecosystems on the planet. Estuaries, 

and their associated tidal wetlands, provide a wealth of ecosystem services for coastal 

South Carolina. For example, salt marshes provide the first line of defense against coastal 

erosion, rising sea levels, and storm surges (Shepard et al., 2011). Inland coastal waters 

also provide critical nursery habitat for several commercially and recreationally important 

fishery species such as shrimp, blue crab, flounder, and redfish (Wiegert and Freeman, 

1990). Additionally, the social and aesthetic qualities of South Carolina’s coastal 

landscape serve as the cultural backdrop of the “Lowcountry.” However, a growing 

coastal population threatens these important ecosystems.  

 Coastal counties contribute less than 10% of the United States’ land area but are 

home to 40% of the nation’s population (NOAA, 2013). As the United States’ population 

grows, population density in the coastal zone will continue to increase. South Carolina, a 

state with vast coastal resources, is no exception to this trend. From 2000 to 2018, South 

Carolina’s population grew from 4.01 to 5.08 million people (a 26% increase) making it 

the 11th fastest growing state in the nation (US Census Bureau, 2018). This growth is 
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especially prominent along the coast; for instance, the City of Charleston is growing at a 

rate three times the national average (CRDA, 2018). 

 Coastal South Carolina has undergone widespread changes in land use and 

landcover to accommodate this influx of new residents. New infrastructures such as 

homes, roads, parking lots, golf courses, and shopping centers have spread across the 

landscape in a process known as urban sprawl. This change in landcover has many 

impacts including habitat loss and an increase in contaminants entering downstream 

aquatic systems via nonpoint source pollution. According to NOAA’s Coastal Change 

and Analysis Program, Charleston County gained 4,530 ha of developed landcover 

between 1996 and 2010 which resulted in a 20% increase in impervious surface coverage 

(NOAA C-CAP). These impervious surfaces represent a significant threat to South 

Carolina’s estuarine systems. 

 Impervious surfaces, such as pavement or rooftops, impact the water cycle at the 

watershed scale. In an undeveloped watershed, rainfall is intercepted by vegetation, 

slowed down, and allowed to percolate into the soil; however, rainfall on impervious 

surfaces is rapidly converted into surface runoff. “SWARM”, standing for stormwater 

runoff modeling system, was adapted from the USDA Natural Resources Conservation 

Services’ TR-55 model and calibrated for the shallow water table conditions of coastal 

South Carolina (Blair et al., 2014). According to this model, 67% of rainfall is converted 

into runoff in urban watersheds compared to 27% in forested watersheds. In addition to 

increasing the risk of flooding, stormwater runoff transports pollutants into the aquatic 

environment and has been identified by the EPA as the leading cause of nonpoint source 
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pollution (US EPA, 2016). In coastal South Carolina, tidal creeks and estuaries bear the 

burden of draining an increasingly urbanized landscape.  

 Holland and others (2004) used impervious cover as an indicator of 

environmental quality in 23 tidal creeks across coastal South Carolina. Their results 

demonstrated a correlation between a watershed’s impervious cover and physical, 

chemical, and biological changes in tidal creeks such as altered salinity and sediment 

dynamics, increased pollutants, and elevated levels of fecal coliform bacteria. When the 

impervious cover of watersheds exceeded 20%, data on the health of biological 

communities in tidal creeks showed negative impacts. These biological impacts included 

a reduction in stress-sensitive benthic organisms and lower shrimp abundances. This 

study supports the link between watershed development and decreased water quality and, 

most notably, demonstrates the biological impact of these changes. Holland and others’ 

(2004) paper is one of many in a growing body of research exploring the connection 

between urbanized watersheds and degraded estuarine environments in South Carolina 

(Parker, 2018; Sanger et al., 1999a; Sanger et al., 1999b; Sanger et al., 2015; Van Dolah 

et al., 2008).  

 Since these earlier studies, development has not slowed down in the region and 

coastal South Carolina’s population continues to grow. Sustainable development requires 

finding the balance between population growth and protecting the coastal environment. 

Reassessing the relationship between urbanization and estuarine habitat quality can aid 

resource managers, municipalities, developers, and other stakeholders in finding this 

balance. This project built upon previous studies by expanding the geographical range, 
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utilizing more contemporary datasets, exploring a broader range of environmental 

parameters, and incorporating an additional theme of climate change.  

 Anthropogenic climate change is arguably the greatest environmental issue of our 

time. While threats of sea-level rise and hurricanes garner considerable attention from 

coastal communities, research into the effects of climate change on changing temperature 

and precipitation regimes on coastal ecosystems is less common. The Fourth National 

Climate Assessment (NCA) report highlights some of the anticipated impacts of climate 

change for the Southeast such as warming temperatures, increasing precipitation, and 

more frequent extreme precipitation and extreme heat events (USGCRP, 2017).  

 In the Southeast, the 2010’s were the warmest decade on record (Vose et al., 

2017). Under their most conservative climate change scenario, the NCA predicts annual 

average temperature in the Southeast will increase 1.89 ºC by 2065 and 2.46 ºC by the 

end of the 21st Century (Vose et al., 2017). Warming temperatures could have important 

implications for estuarine ecosystems. For example, changes in temperature can impact 

the structure of tidal wetland plant communities as seen in the conversion of marshes to 

mangroves (Gabler et al., 2017). Additionally, warmer water temperatures correspond 

with low dissolved oxygen levels and can increase stress on aquatic organisms such as 

fish and crustaceans (Wetz et al., 2013). From a human health perspective, increased 

water temperatures can also facilitate the growth of harmful algal blooms and pathogenic 

bacteria and viruses (O’Neil et al., 2012; Paerl and Huisman, 2008). In addition to 

increasing temperatures, climate change is also expected to cause changes in precipitation 

patterns in the Southeast. 
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 According to the NCA, the United States experienced a 4% increase in annual 

precipitation between 1901 and 2015 (Easterling et al., 2017). While this trend is likely to 

continue under a changing climate, changes in precipitation will vary considerably region 

to region. In the Southeast, annual precipitation totals are expected to increase 5-10% by 

2065 (Easterling et al., 2017). The nature of precipitation is also expected to change in 

the Southeast. Both the number of days between precipitation events and the frequency of 

extreme precipitation events are expected to increase due to climate change (Easterling et 

al., 2017). This means the Southeast may become a climate punctuated by periods of 

drought and extreme precipitation events. Heavy precipitation could intensify stormwater 

runoff and increase the volume of pollutants entering the estuarine environment. On the 

other extreme, periods of drought could be detrimental to South Carolina’s coastal 

ecosystems. Drought has been implicated as a leading cause of salt marsh dieback along 

the Gulf of Mexico (McKee et al., 2004). Drought can also reduce freshwater inflows to 

estuaries leading to changes in salinity and water quality, thus altering the spatial 

distribution and abundance of biological communities (Palmer and Montagna, 2015).  

 South Carolina’s estuaries are defined by change. Twice a day, tidal exchanges of 

up to three meters result in rapid changes to water depth, salinity, and temperature. 

Organisms that reside within these dynamic environments are well adapted to these 

fluctuations, but climate change could amplify these stressors and impact biological 

communities in the water column and in the sediment. At the same time, population 

growth and urbanization are changing the physical landscape of the South Carolina coast. 

The purpose of this project is to examine the intersection of these two forces of change 

and their compounded effects on South Carolina’s estuarine systems. While the 
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connections between urbanization and estuarine environmental quality have been 

established in prior studies, few have explored this relationship within the context of a 

changing climate. This project utilized a novel data synthesis approach to answer these 

questions.  

 Data synthesis is the use of secondary data pulled from a variety of sources to test 

hypotheses. A study design based upon data synthesis can utilize a wealth of datasets to 

answer big-picture questions spanning large geographical areas and long timeframes – 

questions that may otherwise be inaccessible to researchers relying on primary data. This 

study compiled datasets on landcover and land use, weather and climate, and 

environmental quality to describe the condition of South Carolina’s coastal landscape 

over a 20-year period from 1999 to 2018. This diverse assemblage of data was linked 

across space and time to create a synthesized database capable of testing hypotheses 

relating landcover, climate, and coastal ecosystems. After establishing past relationships 

among these factors, this project used linear modeling to predict the future of the 

estuarine environment in a changing South Carolina coast. Understanding this climate-

watershed connection will aid coastal managers in planning for future changes to coastal 

ecosystems and communities. 
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CHAPTER 2. METHODS 

 

2.1. Data Collection 

 

 As a data synthesis project, this study relied on existing datasets to test its 

hypotheses. Extensive data on landcover, land use, weather, climate, and the estuarine 

environment were gathered and organized from multiple sources to characterize the status 

of South Carolina’s coast during the 20-year study period (1999-2018). These data were 

organized into three categories – physiographic, weather and climate, and environmental 

data. 

 

2.1.1. Physiographic Data 

 

 Physiographic data describe the physical landscape of South Carolina’s coast and 

include data on land use, landcover, soil types, stormwater infrastructure, and human 

population. The National Land Cover Dataset (NLCD) is a landcover product available 

online through the Multi-Resolution Land Characteristics Consortium (MRLC) (Yang et 

al., 2018). The NLCD provides a detailed dataset of landcover for the United States using 

Landsat imagery to categorize the landscape into 16 landcover classes (see Table 1) at a 
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30x30 m resolution. NLCD landcover data were downloaded for South Carolina, North 

Carolina, and Georgia for years 2001, 2004, 2006, 2008, 2011, 2013, and 2016. 

 In addition to these landcover classes, the NLCD also produces a dataset of urban 

impervious cover for the United States (Yang et al., 2018). This dataset, derived from 

Landsat imagery, assigns each 30x30 m pixel a value from 0 to 100 based on a calibrated 

model. This value represents the percentage of impervious cover with 100 indicating 

complete imperviousness. Impervious cover data were downloaded for South Carolina, 

North Carolina, and Georgia for years 2001, 2006, 2011, and 2016. 

 Hydrologic soil groups, established by the United States Department of 

Agriculture (USDA), describe soil drainage and are commonly included in stormwater 

runoff models such as the Natural Resource Conservation Service’s (NRCS) TR-55 

method (USDA, 1986). Hydrologic soil group data were downloaded for the state of 

South Carolina using the NRCS web soil survey tool (NRCS, 2019) and are summarized 

in Appendix A.  

 Stormwater retention ponds are a common method of stormwater management 

across the urban-suburban landscape. In 2015, the South Carolina Department of Natural 

Resources (SCDNR) compiled a database of over 20,000 artificial ponds across coastal 

South Carolina’s eight coastal counties (Cotti-Rausch et al., 2018). Ponds from this 

database are divided into seven classes (rural, forest, mining, residential, golf, 

commercial, and mixed), but only five classes specific to stormwater infrastructure were 

used for this study (rural, residential, golf, commercial, and mixed). 

 South Carolina population totals were downloaded from the United States Census 

Bureau at census block and county levels (US Census Bureau, 2018). Census blocks offer 
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the finest spatial resolution but are limited to official census years, with 2010 being the 

most recent at the time of this study. Annual population estimates are available, but only 

at the county-level. 

 

2.1.2. Weather and Climate Data 

 

 This study utilized a combination of short-term weather and long-term climate 

data to explore the effects of temperature and precipitation on South Carolina’s estuarine 

environment. These data were collected from a variety of sources to cover the 20-year 

study period (1999-2018) and large study area. Daily air temperature averages and 

precipitation totals were downloaded using the National Oceanic and Atmospheric 

Administration’s (NOAA) Climate Data Online tool (NOAA NCEI). These weather data 

were compiled for the entire study period (1999-2018) from all available weather stations 

in coastal South Carolina counties as well as bordering coastal counties in North Carolina 

and Georgia. Given this project’s extensive study area and time period, data coverage 

from many individual weather stations were either incomplete or inconsistent. To fill in 

potential coverage gaps, interpolated weather datasets were also downloaded. This study 

used Oak Ridge National Laboratories’ (ORNL) DAYMET gridded weather data product 

to supplement daily weather observations (Thornton et al., 2018). DAYMET offers a 1x1 

km grid of daily weather estimates (e.g., temperature and precipitation) for all of North 

America from 1980 to present. 

 In addition to daily weather data, NOAA’s Climate Data Online service also 

provides climate normals (i.e., 30-year temperature and precipitation averages) for select 
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weather stations (NOAA NCEI). The most recent climate normals data were derived 

from 1980-2010 and are summarized by month, season, and year. The definition of 

seasons used throughout this study follow NOAA’s climate normals and are referenced in 

Appendix B. Normals were downloaded for three weather stations that represent the 

northern, central, and southern regions of the South Carolina coast – Brookgreen 

Gardens, Charleston International Airport, and Savannah International Airport, 

respectively (see Figure 1). Climate normal values are summarized in Table 2. These 

three stations were selected because they represent some of the longest-running weather 

datasets along the SC coast. 

 Several indices have been developed to describe drought. While most of these 

indices have origins in agriculture, their inclusion in this study offers insight into long-

term precipitation patterns along South Carolina’s coast. Monthly drought index values 

are available from NOAA’s National Climate Data Center’s Drought Atlas (NOAA 

NCDC). Drought index data were downloaded from the NCDC Drought Atlas for South 

Carolina’s coastal climate divisions (see Figure 2) from January 1999 to December 2018. 

The drought indices selected for this study are summarized in Appendix C.   

 Climate teleconnections describe global climatic patterns that can sometimes be 

linked to local weather impacts. The El Niño-Southern Oscillation (ENSO) is perhaps the 

most well-known of these climate teleconnections. Other climate teleconnections 

incorporated in this study are the Atlantic Multidecadal Oscillation (AMO), North 

Atlantic Oscillation (NAO), and the Arctic Oscillation (AO). These teleconnections are 

summarized by index values representing their positive-negative or warm-cool phases. 

These indices were downloaded by month for the entire study period using R’s ‘rsoi’ 
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package (Albers, 2019; R Core Team, 2019). More information on the effect of these 

teleconnections on South Carolina’s climate can be found in Appendix D.  

 

2.1.3. Environmental Data 

 

 South Carolina’s Estuarine and Coastal Assessment Program (SCECAP) is a 

multi-agency environmental monitoring program run by SCDNR with cooperation from 

the South Carolina Department of Health and Environmental Control (SCDHEC), 

NOAA, the Environmental Protection Agency (EPA), and the US Fish and Wildlife 

Service (USFWS). SCECAP’s mission is to monitor the environmental health of South 

Carolina’s estuaries and provide detailed, periodic reports to resource managers and the 

public (Sanger et al, 2016). Launched in 1999, SCECAP has produced 20 years of 

environmental data on South Carolina’s estuarine environment. During this time, over 

800 sites have been sampled spanning the full range of South Carolina’s estuarine 

habitats from small tidal creeks to large estuaries (see Figure 3). From 1999 to 2006, 60 

SCECAP sites were sampled per year, and from 2007 onward, 30 sites are sampled per 

year. Sites are randomly selected from all South Carolina estuarine waters and are split 

evenly into two habitat categories – open water and tidal creek. Tidal creeks are estuarine 

habitats with channel widths less than 100 m and open water sites have channel widths 

greater than 100 m. SCECAP data collection primarily occurs during July and August 

(although in some earlier SCECAP years sampling began in June) and is conducted 

within three hours of low tide.  
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 SCECAP collects a wide range of data to assess water quality, sediment quality, 

and biological quality (see Appendix E). At each sampling location, several water and 

sediment samples are collected from the water column and channel bottom, respectively. 

These samples are then analyzed for water quality and contaminant data. A separate set 

of sediment samples are further processed to identify and quantify benthic invertebrate 

infauna. Bottom trawls are conducted at each SCECAP site to evaluate the site’s nekton 

community. These trawls capture fish and large invertebrates which are identified to 

species, measured, and released. More information on SCECAP and its sampling protocol 

can be found in SCDNR’s most recent report (Sanger et al., 2016).  

 

2.2. Data Processing 

 

 This diverse assortment of data required extensive processing before 

incorporation into the study. Microsoft Excel, Microsoft Access, ArcMap, and R were the 

key instruments used in processing, organizing, and storing these data. Examples of data 

processing include identifying gaps in data coverage, detecting erroneous values, 

analyzing spatial data in GIS, and converting environmental data into useable formats.  

 

2.2.1. Physiographic Data 

 

 ArcMap GIS software was the primary tool to process physiographic data (ESRI, 

2018). Physiographic data were summarized by spatial units (e.g., watersheds) to link 

estuarine habitat quality and the surrounding landscape. Hydrologic Unit Code 
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watersheds (HUCs) were the primary units of analysis in this study. HUCs are 

standardized, USGS-delineated watersheds that range in size from large river basins to 

small headwater watersheds. HUCs spanning the full reach of coastal South Carolina 

were downloaded from the USGS’ Watershed Boundary Dataset (WBD, 2013). 

Watershed size is indicated by the number of HUC digits; 8-digit HUCs were the largest 

and 14-digit HUCs were the smallest used in this study. Figure 4 displays the extent of 

these watersheds. While HUC watersheds offer a standardized and hydrologically-

derived spatial grouping system, alternative spatial units such as grids and buffers were 

explored to better understand spatial relationships among the data.  

 To create gridded spatial units, ArcMap’s fishnet grid tool was used to overlay a 

square grid across South Carolina’s coast. The resulting grid contained four cell sizes (25, 

100, 400, 1600 km2) arranged to simulate HUC watersheds’ nested organization (see 

Figure 5). These gridded spatial groupings allow for more randomized spatial analyses 

with uniformly sized and spaced units. In addition to watersheds and gridded spatial 

units, buffers were established around environmental data points to summarize nearby 

physiographic data. ArcMap’s multiple ring buffer tool was used to draw circular buffers 

around each SCECAP sampling station with radii of 1, 2, and 3 km. The benefit of 

buffers is their ability to capture physiographic data at a more localized scale than the 

HUC watersheds or grid cells (see Figure 6). 

 After establishing spatial units, physiographic data were summarized using 

ArcMap’s spatial analysis toolbox. NLCD landcover data were summarized by spatial 

unit using the tabulate area tool for each year of data. This tool totaled the area (m2) each 

landcover category contributed to each spatial unit (i.e., watershed or grid cell). In 
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instances where spatial units overlapped (i.e., buffers), the tabulate intersection tool was 

used instead. The tabulate intersection tool handles overlapping polygons better than the 

tabulate area tool, but required additional processing in R to produce compatible outputs. 

After organizing these outputs into a data table, landcover categories were translated into 

percent total upland area. Upland area was defined as non-water and non-marsh 

landcover categories. Landcover data classes were also condensed into broader landcover 

categories (see Table 1).  

 Landcover data were further processed to capture changes within each landcover 

category during the study period (e.g., hectares of forest converted to development). 

ArcMap’s reclassify tool converted NLCD landcover categories into numeric variables 

for years 2001 and 2016. The raster calculator tool was then used to overlay and multiply 

the reclassified NLCD pixels and resulted in a new layer representing landcover change 

between 2001 and 2016. Numeric values were converted back into landcover categories 

to display the change in landcover between 2001 and 2016. The tabulate area tool was 

used to summarize landcover change at the county level (see Figures 7-9).  

 Unlike categorical NLCD landcover data, urban impervious cover is a continuous 

variable and requires a different set of spatial tools. Impervious cover data were 

processed using ArcMap’s zonal statistics tool for each year of available data. To focus 

on upland impervious cover, spatial units were modified to represent upland area before 

running the zonal statistics tool. Upland landcover categories (i.e., not open water or 

marsh) were combined and intersected with each spatial unit to create upland watersheds, 

grid cells, and buffers. The zonal statistics tool calculated the mean pixel value across the 

upland spatial unit (i.e., watershed, grid cell, or buffer). The final result were data tables 
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of mean upland urban impervious cover (%) for each spatial unit and year of available 

data. 

 Hydrologic soil groups were summarized by spatial unit using the tabulate area 

tool which totaled the area (m2) each soil group contributed to the upland spatial unit (i.e., 

watershed or grid cell). Outputs were summarized into a data table where hydrologic soil 

groups were translated into percent upland area. Additionally, soil group data were 

simplified into poorly- and well-drained categories (see Appendix F). 

 NLCD landcover, urban imperviousness, and hydrologic soil group data are all 

examples of raster datasets; however, stormwater pond and census data are vector 

datasets and required different processing methods. Stormwater pond count and area (m2) 

were calculated for each spatial unit using the tabulate intersection tool. In cases where 

ponds spanned multiple spatial units, only ponds with more than 50% of their area within 

that unit were included in the total count. Outputs were organized into a data table where 

density (ponds/ha) and percent total area were calculated.  

 Population totals for each spatial unit were estimated using the tabulate 

intersection tool. When census blocks did not align with the spatial unit, population was 

prorated based on the proportion of the block within the watershed. This method provided 

a good estimate of population but assumed an even distribution throughout the census 

block. Population totals were then divided by area to estimate population density 

(persons/ha) for each spatial unit.  

 

 

 



 16 

2.2.2. Weather and Climate Data 

 

 Daily weather observations from NOAA were summarized by calculating multi-

day, running averages of daily temperature and totals of precipitation for 1 to 7-day 

periods. Temperature and precipitation data from the three primary weather stations were 

summarized by month, season, and year. These data were subtracted from their 

corresponding 30-year climate normals to calculate deviation from normal. Deviations 

from normal offered insight into long-term climatic patterns and were used to classify 

South Carolina’s climate history into cool and dry, cool and wet, warm and dry, and 

warm and wet periods (see Figures 10-11).  

 DAYMET’s daily temperature and precipitation estimates were downloaded using 

the ‘daymetr’ R package (Hufkens et al., 2018). Each DAYMET pixel was matched with 

each SCECAP site’s sampling date and geographical coordinates. DAYMET data were 

then processed in R to calculate rolling averages and totals of temperature and 

precipitation for 1, 2, 3, 5, 7, 10, 14, 30, 45, 60, and 90-day intervals.  

 Weather data were used to identify extreme weather events during the study 

period. This study classified extreme weather events as maximum daily temperature and 

24-hour precipitation totals in excess of the 95th percentile of all observations compiled 

for 1999 to 2018. The 95th percentile values were calculated for each of the three primary 

weather stations and summarized in Table 2. Extreme temperature and precipitation were 

summarized by year and weather station by tallying the number of days per year in which 

temperature and precipitation exceeded the 95th percentile threshold.  
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2.2.3. Environmental Data 

 

 The majority of SCECAP environmental data had already been processed by 

SCDNR staff before its incorporation into this study. For example, sediment 

contamination effects range median quotients (ERMQ) were calculated from raw 

concentration data for each of the sediment contaminant categories studied. ERMQ uses 

the biological impacts of multiple contaminants to create a standardized score for each 

category of contaminant (e.g., PAHs, PCBs, metals) (Long et al., 1995; Hyland et al., 

1999). Measurements of water quality were taken with YSI Model 6920 multiprobes 

deployed at each site. Water quality parameters (e.g., dissolved oxygen, temperature, 

salinity) used in this study are averages from the duration of data logger deployment (25-

hours to capture full tidal and diurnal cycles). Channel width was estimated for each 

SCECAP site using ArcMap’s measure distance tool and satellite imagery to measure the 

distance between channel banks. 

 Estuarine biological conditions at SCECAP sites were described with measures of 

abundance (i.e., number of individuals per site) and species richness (i.e., number of 

unique species per site) for the nekton and benthic communities. Nekton and benthic 

community data were derived from trawls and benthic grabs, respectively. Per SCECAP 

protocol, trawls at open water sites are towed for 1,000 m whereas trawls at tidal creek 

sites are towed for 500 m. Abundance data were standardized by dividing the number of 

individuals captured by area (m2) trawled. Trawl area was calculated by multiplying 

distance towed by the width of the trawl net’s opening (2.76 m). With this formula, open 

water sites had a trawl area of 2,760 m2 and tidal creek sites had a trawl area of 1,380 m2. 
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Benthic abundance was similarly converted to abundance per unit area by dividing the 

number of individuals by area sampled. Each benthic grab sampled an area of 0.044 m2 

which was doubled to 0.088 m2 because two grabs were performed at each site. While 

total abundance was standardized by area, the relationship between species richness and 

sample area is more complex (Connor and McCoy, 1979). Consequently, species richness 

was not standardized by area and nekton species richness data were analyzed separately 

by habitat type. Benthic species richness, on the other hand, was analyzed across both 

habitat types because sampling protocol did not differ between tidal creek and open water 

sites.  

 Community data were further summarized by SCDNR staff into indices that 

represent the biological integrity of each site. The two benthic indices used in this study 

are the Benthic Index of Biological Integrity (BIBI) and the Multivariate AZTI’s Marine 

Benthic Index (MAMBI) (Muxika, 2007; Van Dolah, 1999). BIBI and MAMBI values 

describe the benthic community structure in relation to environmental stressors. Higher 

BIBI and MAMBI values indicate benthic communities with greater relative abundance 

of pollution-sensitive species, and lower BIBI and MAMBI values indicate benthic 

communities with greater relative abundance of pollution-tolerant species. The BIBI has 

the benefit of being locally calibrated to represent taxa in the Carolinian province. 

MAMBI, on the other hand, was originally developed for European waters and many taxa 

collected at SCECAP sites were not represented in AZTI’s database (although the AZTI 

database has since been supplemented with more United States specific taxa). To account 

for these unassigned taxa, MAMBI values were omitted from analyses in sites where 
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>20% of the benthic sample were not assigned to an ecological group (~28% of SCECAP 

sites).   

 

2.3. Data Integration 

 

 The data integration phase of this project linked all physiographic, weather, and 

environmental data across space and time to create an analysis-ready database. SCECAP 

sites were linked to their respective spatial unit (e.g., watershed, grid cell) using 

ArcMap’s spatial join tool. When physiographic data had a time component (e.g., NLCD 

year), SCECAP sites were linked to the most recent year of data that would have been 

available at the time of sampling. For example, a SCECAP site sampled in 2015 would 

be linked to 2013, not 2016, NLCD data.    

 Weather, particularly sub-tropical summer thunderstorm activity, is highly 

localized; therefore, this study matched environmental sampling sites to the nearest 

weather station. ArcMap’s point distance tool provided distances between each SCECAP 

site and every weather station. Due to inconsistent data coverage of weather stations (i.e., 

missing dates), these linkages were processed in R so that each SCECAP site was 

matched with the closest weather station that also had overlapping temporal coverage. To 

link environmental data with long-term weather trends, ArcMap’s near tool was used to 

pair each SCECAP station with the closest primary weather station (i.e., Brookgreen 

Gardens, Charleston International Airport, or Savannah International Airport). For 

drought data, the spatial join tool was used to match SCECAP sites to their respective 

climate division. After establishing these spatial relationships, environmental and 



 20 

weather-climate data were linked across time based on the SCECAP sampling date. The 

final product of the data integration phase was a Microsoft Access database capable of 

storing and indexing large amounts of data for easy querying. Access’s relational features 

allowed for the creation of large, analysis-ready data tables linking weather, 

physiographic, and environmental data.    

 

2.4. Data Analysis 

 

 The data analysis process was divided into exploratory and confirmatory phases. 

Exploratory data analysis helped establish general trends in the data. t-tests explored 

variations in environmental data between broad categories of data (e.g., open water vs. 

tidal creek) and hot spot and time series analyses explored spatiotemporal trends in the 

data. These exploratory data analyses were instrumental in developing a better 

understanding of the dataset while informing and improving the project’s hypotheses. 

While exploratory data analysis contributes to hypothesis building, confirmatory data 

analysis was best suited for hypothesis testing. In this project, linear regression models 

were the primary instrument in confirmatory data analysis.  

 

2.4.1. t-tests 

 

 Welch’s t-test was used to compare means of environmental parameters between 

broad categories of data. Welch’s t-test is an adaptation of Student’s t-test and was 

selected for its ability to compare means between two unpaired populations of unequal 
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variance and different sample size. Normally distributed data is one assumption of the t-

test and many variables in this study do not follow a normal distribution; however, the 

study’s large sample size (N=865) allows for this assumption to be relaxed. Furthermore, 

non-parametric alternatives to the t-test such as the Wilcoxon-Mann-Whitney test also 

carry assumptions not fully met by these data (e.g., populations of equal variance).  

 SCECAP environmental data were categorized into groups based upon habitat 

type, watershed development, and time period. For habitat type, data were split into open 

water and tidal creek sites per SCECAP sampling methodology. Watershed development 

was based upon mean upland impervious cover within coastal South Carolina’s 14-digit 

HUCs. Watersheds were binned into two categories (developed and undeveloped) using 

the median value of impervious cover (18.9%) from the study dataset. 14-digit HUCs 

with mean upland impervious cover >18.9% were classified as developed and 14-digit 

HUCs with <18.9% mean upland impervious cover were classified as undeveloped. 

SCECAP data were classified into early and late time periods by splitting the sampling 

years into the first and last ten years of data – 1999-2008 and 2009-2018.  

 After grouping SCECAP data into these categories, Welch’s t-tests were 

performed for each environmental parameter to compare population means between 

groups. Tests were run before and after splitting SCECAP sites into open water and tidal 

creek sites. t-tests operate on a null hypothesis of no significant difference between 

means in two populations. This null hypothesis was rejected when the t-test produced a p-

value of ≤0.05. R’s ‘broom’ package was used to automate t-tests and store their results 

into data tables (Robinson and Hayes, 2020) (see Tables 3-9). Differences between 
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environmental parameters within the various groupings are visually summarized with 

boxplots (see Figures 12-26).   

 

2.4.2. Time Series Analysis 

 

 Generalized least squares (GLS) regression was used to evaluate trends in 

environmental and weather data over the course of the study period. In time series 

analysis, GLS regression provides a cursory glance as to whether variables are increasing 

or decreasing over time (i.e., slope ≠ 0). To prepare the data for GLS regression, 

environmental and weather data were averaged by year. Environmental data were 

summarized across all habitat types as well as split into open water and tidal creek 

categories. Weather data were summarized by year and by each of the three major 

weather stations (Brookgreen Gardens, Charleston International Airport, and Savannah 

International Airport). These weather data were also summarized across all three stations 

to represent coastal South Carolina weather as a whole. While Charleston International 

Airport and Savannah International Airport weather stations had complete data coverage 

during the study period, there were several gaps in data coverage from the Brookgreen 

Gardens station. Seasons and years with more than 20% of missing days were excluded 

from analysis.  

 After preparing the data, R’s ‘nlme’ package was used to run GLS regression 

models with year as the independent variable (Bates et al., 2019). To account for 

temporal autocorrelation (i.e., lack of independence between years), a first-order 

autoregressive correlation structure was included in the models (corAR1=~Year). The 
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null hypothesis (slope=0) was rejected in models with p-values ≥0.05. Figures 27-40 

display the results of these GLS regression models. Model outputs were summarized into 

tables using R’s ‘stargazer’ package and can be seen in Tables 10-15 (Hlavac, 2018). 

 

2.4.3. Hot Spot Analysis 

 

 While time series analyses offered insight into temporal variability within the 

data, hot spot analyses were used to capture spatial variability. ArcMap’s optimized hot 

spot analysis tool was used to identify hot and cold spots for environmental parameters 

along South Carolina’s coast. This tool applied the Getis-Ord Gi* statistic to identify 

spatial units with significantly greater (hot spot) or lesser (cold spot) values than the 

surrounding units (Getis and Ord, 2010). The optimized hot spot analysis tool was run for 

select SCECAP environmental parameters aggregated by 14-digit HUC watersheds, and 

results are displayed as maps in Figures 41-52. 

 

2.4.4. Multiple Linear Regression 

 

 While t-tests, time-series analysis, and hot spot analysis were great tools for 

exploratory data analyses, linear modeling was best suited for the confirmatory data 

analysis phase of this project. Specifically, multiple linear regression was used to 

examine relationships among the full suite of independent and dependent variables 

accumulated during this study. Multiple linear regression was selected over other 

statistical methods for its ability to incorporate multiple predictors, interpretability, and 
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predictive capabilities. Multiple linear regression uses the following formula to test the 

combined effects of multiple predictors on one response variable by fitting a least squares 

line of best fit:  

  

𝑦! =	𝛽" + 𝛽#𝑥# + 𝛽$𝑥$ 	+ ⋯	𝛽!𝑥! 	+ 𝜀! 

    

  Where: 

   𝑦!  = dependent variable 

   𝛽" = intercept 

   𝛽! 		= regression coefficient  

   𝑥! 		= independent variables 

   𝜀!  = error term  

   

 The volume of data in this project presented many challenges in modeling. 

Exploring every possible combination of predictor variable across multiple temporal and 

spatial scales proved impractical; therefore, stepwise regression was used to narrow down 

the number of variables and select the most significant predictors for each response 

variable. Stepwise regression is an automated model selection tool that works by adding 

and subtracting predictor variables in a multiple linear regression formula and selecting 

the combination of variables that produces the best model. Several criteria can be used to 

determine the best model such as the Akaike Information Criterion (AIC) or Bayesian 

Information Criterion (BIC). BIC was selected for this project because it penalizes the 

addition of new variables. By favoring simplicity, BIC avoids overfitted models which is 
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a concern when dealing with such a large suite of variables. Using JMP statistical 

software, Stepwise BIC regression was run for each response variable (see Appendix E) 

with all explanatory variables (see Appendices B, F, G) as input parameters (SAS, 2019). 

To better understand the spatial relationships between physiographic data and 

environmental responses, stepwise regressions were run separately for each spatial unit 

(e.g., 12-digit HUC, 1 km buffer, 400 km2 grid). Automated model outputs were further 

refined by removing outliers in the dataset and, when appropriate, removing redundant or 

conflicting explanatory variables. These final models were recreated in R where the 

‘broom’ package was used to organize model outputs into one dataset (Robinson and 

Hayes, 2020).  

 

2.4.5. Model Meta-Analysis 

 

 After organizing all model outputs into a single dataset, meta-analyses were 

performed on the linear model results. Meta-analyses help reveal overarching trends in 

the data. For example, model performance (i.e., R2) was compared among different 

spatial groupings to determine the extent to which landcover variables influence 

environmental responses. Meta-analysis results related to model R2 are summarized in 

Table 16. Additionally, explanatory variables were tallied up across all models to identify 

the most prevalent parameters in the dataset. Parameter frequency was then calculated by 

dividing the number of occurrences by the total number of models. Parameters with 

higher frequencies might indicate variables with greater explanatory power. Parameter 

frequency can also reveal temporal patterns within the data. For example, weather 
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patterns in winter may be more prevalent predictors than other seasons or 10-day rainfall 

totals may be more frequent predictors than 3-day rainfall totals. Meta-analysis results 

related to model parameters are summarized in Tables 17-20.  

 

2.4.6. Linear Model Selection and Refinement   

 

 While stepwise regression was suitable for processing the large number of 

potential models, a more supervised approach was followed to create a robust set of 

“final” linear models for making predictions. For each response variable, the model with 

the highest adjusted R2 was chosen as the “best” model for further refinement. The 

number of response variables was also reduced during this stage. In sediment quality 

models, measurements of ERMQs were chosen over raw concentration data because they 

produced models with higher R2 values. Similarly, MAMBI was chosen over BIBI to 

represent benthic community structure. 

 Once selected, these “best” models were tested to see if they violated any of the 

underlying assumptions of linear modeling. Residual plots were visually inspected for 

homoscedasticity. When appropriate, outliers were removed to improve the dispersion of 

residuals. Response variables were also log transformed and model results were 

compared side-by-side with the untransformed model results. Transformed response 

variables were selected if model performance significantly improved or residuals became 

more heteroscedastic. 

 Another assumption of linear models is absence of multicollinearity. This 

assumption proved difficult to maintain because the explanatory variables of this project 
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represent complex phenomena such as climate. To mitigate this concern, interaction 

effects among each independent variable were tested in every model. If significant, these 

interaction terms were included in the final model. Detailed model outputs from this final 

selection are summarized in Tables 21-24.  

 

2.4.7. Predictive Modeling  

 

 One goal of this project is to extrapolate trends from historical environmental 

conditions into the future under different population growth and climate change 

scenarios. Linear models developed during this project offered a statistically valid tool to 

make such predictions. Population growth and climate change scenarios were established 

from the literature. Estimated future population data were downloaded from Hauer’s 

(2019) online dataset. Hauer calculated county-level population projections at 5-year 

intervals from 2015-2100 for the entire US under different growth scenarios, known as 

shared socioeconomic pathways (SSPs). To capture both low and high ends of these 

population projections, data were downloaded for two SSPs. These were the sustainable 

growth pathway (SSP1) and fossil-fueled development pathway (SSP5). Population totals 

from these two SSPs were downloaded for the year 2065 and summed up across all eight 

coastal South Carolina counties. The year 2065 was chosen because it matched available 

climate change scenario data for the mid-21st century. 2010 US Census population 

numbers were then totaled across South Carolina’s coastal counties and compared to the 

2065 projections to calculate percent change.  
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 Climate change scenarios for this project were informed by the Fourth National 

Climate Assessment’s (NCA) Climate Science Special Report (USGCRP, 2017). This 

report integrates multiple climate change studies to deliver a comprehensive assessment 

of climate change, and its many effects, for the United States. The NCA report was 

particularly helpful for this project because of its region-specific projections of 

precipitation and temperature changes under different climate change scenarios, known 

as Representative Concentration Pathways (RCPs). This project used mid-21st century 

(2065) temperature and precipitation projections for the Southeastern US under low 

emissions (RCP 4.5) and high emissions (RCP 8.5) climate change scenarios. These 

values were taken from data tables and figures in chapters 6 and 7 of the NCA report 

(Easterling et al., 2017; Vose et al., 2017). While precipitation projections were already 

available as percent change, temperature projections were only available as °F increase. 

These data were compared to 30-year climate normals data averaged across the project’s 

three primary weather stations to calculate percent change. Summaries of these 

projections for coastal South Carolina can be found in Table 25.  

 After establishing these predictions, scenarios were created for each combination 

of population growth, precipitation change, and temperature change under low and high 

projections. Scenario definitions are summarized in Table 26. Prediction datasets were 

then created for each scenario to feed into previously developed linear models. To create 

these prediction datasets, all independent variables were averaged across the entire 

SCECAP dataset with habitat types (i.e., tidal creek, open water) averaged separately and 

together. Independent variables influenced by population growth or climate change were 

modified according to the scenario’s projections. For example, population, developed 
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landcover types, and impervious surfaces were increased by the scenario’s population 

percent change (assuming a 1:1 relationship between population growth and 

development).  

 Climate variables were altered to represent the different climate change scenarios. 

Observed daily temperature averages and precipitation totals were increased by the 

scenario’s respective percent change values. Seasonal and annual weather data were 

calculated as differences from 30-year climate normals, thus could not be simply 

modified by multiplying percent change. Instead, these data were increased by the 

scenario’s predicted changes in °C or cm.  

 Baseline conditions (scenario 0) were estimated using SCECAP-wide averages of 

population, developed landcover, impervious cover, and weather observations. Since 

seasonal and annual weather variables were calculated as difference from normal, these 

values were changed to zero in the baseline scenario to reflect 30-year climate normal 

data. Results from these scenarios were organized into a final prediction dataset mirroring 

the dataset used in model creation.  

 The finalized selection of linear models were rerun with the prediction dataset for 

each scenario and response variable using R’s ‘predict.lm’ function. This function 

produced predicted responses (e.g., ERMQ metals, enterococci) with accompanying 95th 

percentile upper and lower confidence intervals. Model prediction results for each 

response variable and scenario were organized into one dataset for further analysis. At 

this stage, response variables that had been transformed during modeling were 

untransformed for easier interpretation. Predicted responses were also compared to 

baseline responses to calculate percent change. Scenario prediction outputs for each 
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response variable are available as data tables (see Tables 27-38) and graphs (see Figures 

53-65). 
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CHAPTER 3. RESULTS 

 

3.1. Data Collection and Processing 

 

3.1.1. Physiographic Data 

 

 Despite a rapidly growing population, coastal South Carolina remains a largely 

natural landscape. The composition of coastal South Carolina’s landcover, and how it 

compares to the rest of the state, is showcased in Table 1. Results were from the most 

recent NLCD product (2016) and were reported as coastal (i.e., eight coastal counties) 

and statewide totals. County-level NLCD landcover data were further summarized and 

plotted over time as seen in Figure 66. These results show that coastal South Carolina is a 

predominantly forested landscape (66%). Woody wetlands (34%) and evergreen forest 

(23%) were the two most common forest types in coastal South Carolina. Developed 

landcover represents the second most common landcover type for coastal South Carolina. 

The majority of developed landcover comes from low intensity development categories. 

The third most prominent landcover category in coastal South Carolina is marshland (i.e., 

emergent herbaceous wetlands) which comprise 10% of total coastal landcover. These 

tidally influenced wetlands define South Carolina’s coastal landscape and range from 

freshwater to saltwater. In saltwater and brackish conditions, these systems are dominated 
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by a single species – smooth cordgrass (Spartina alterniflora). As marshlands transition 

to freshwater, smooth cordgrass is replaced with other graminoid species such as black 

needlerush (Juncus roemerianus). Agriculture and open water are the fourth and fifth 

most prominent landcover categories, respectively.  

 These landcover data showcase South Carolina’s diverse coastal landscape. 

Results from the landcover change analysis, visualized in Figure 7, help create a more 

complete picture of a changing landscape. Figure 7 displays the hectares of each county 

that remained the same or changed between 2001 and 2016. The majority (96%) of 

coastal counties’ areas did not experience change in landcover during the study period. 

Figure 8 breaks down the area of coastal counties that did experience changes in 

landcover by category. Low intensity development, high intensity development, and 

water were the only three landcover categories that experienced a net increase with low 

intensity development showing the largest gain (+15,194 ha). Forested uplands, forested 

wetlands, marsh, and agriculture all experienced a net decrease with forested uplands 

losing the most area (-12,749 ha). These changes were further analyzed at the county 

level in Figure 9. Rural counties such as Colleton experienced very little change whereas 

counties with rapidly rising populations (e.g., Horry county) experienced the greatest 

change in landcover. To explore which landcover categories were converted to which, 

these data were visualized using a Sankey diagram (Figure 67). Forested uplands and 

forested wetlands were the two landcover types with the largest areas lost to 

development. There was no loss of high intensity developed landcover and all lost low 

intensity developed landcover was converted into high intensity development, suggesting 

an irreversible pattern of development. Agricultural land experienced a decline in area 
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during the study period, primarily due to conversion into forested uplands. Another 

noteworthy pattern of landcover change occurred between forested wetlands and 

marshes. These two landcover types showed significant gains and losses between each 

other which suggests a dynamic boundary between forested wetlands and marsh habitats.  

 In terms of impervious cover, more populated counties such as Charleston, 

Beaufort, and Horry exhibit a significantly larger urban footprint than rural counties such 

as Colleton, Georgetown, and Jasper (Figure 68). Beaufort, Charleston, and Horry 

counties also demonstrated higher levels of impervious surface cover than the statewide 

average. Across South Carolina, impervious surface cover has been steadily increasing 

with the sharpest increase occurring between 2001 and 2006.  

 Census estimates, available by year and county, were used to summarize 

population growth in coastal South Carolina. Beaufort, Charleston, Dorchester, and Horry 

all have higher population densities than the statewide average (Figure 69). These 

counties also demonstrate a faster rate of population growth than the more rural counties 

of Colleton, Georgetown, and Jasper. Table 39 provides a more detailed summary of 

population changes between 2000 and 2018. The state of South Carolina grew from 4.02 

million in 2000 to 5.08 million people in 2018. When data were combined for all coastal 

counties, an increase from 0.99 million in 2000 to 1.45 million people in 2018 was 

observed. Comparing these data in the form of percent change indicate that coastal 

populations increased at a rate of 47% – nearly double the state’s growth rate of 26%. 

While Charleston County held the largest number of residents, its growth rate (31%) was 

lower than the coastal average and only slightly higher than the state average. Horry 

County demonstrated the highest percent change of 74% followed by Dorchester (66%), 



 34 

Beaufort (53%), and Berkeley (53%). Colleton was the only coastal county to experience 

a decrease in population during the study period (-2%).  

 Physiographic data were processed beyond the county level using a variety of 

spatial units such as HUC watersheds, grids, and buffers. Table 40 provides basic 

statistics on the HUC watersheds analyzed in this study. 8-digit HUCs were the largest 

watersheds studied with an average size of 262,213 ha and 14-digit HUCs were the 

smallest with an average size of 205 ha. Data were processed for a total of 19 8-digit, 60 

10-digit, 264 12-digit, and 205 14-digit HUC watersheds. Figure 70 provides an example 

of physiographic data processing outputs for a 14-digit HUC watershed in Charleston, 

SC. 

 

3.1.2. Weather and Climate Data 

 

 Daily weather data were compiled from a total of 401 weather stations spanning 

South Carolina’s coastal counties and neighboring Brunswick County, North Carolina 

and Chatham County, Georgia. These data were collected from January 1st, 1999 to 

December 31st, 2018 for a total of 7,305 days. Daily weather observation data were 

compiled into a single database resulting in a total of 588,092 precipitation records and 

176,260 temperature records.  

 30-year climate normal data from the three primary weather stations are 

summarized in Table 2. The southernmost station (Savannah International Airport, GA) 

had the warmest and driest climate, the northernmost station (Brookgreen Gardens, SC) 

had the coolest and wettest climate, and climate at the Charleston International Airport 
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station was in the middle of the two other stations. Table 2 also defines extreme 

temperature and extreme precipitation events for these three weather stations. Extreme 

temperature events are days with a maximum temperature greater than 33.3, 34.3, and 

35.0 °C at Brookgreen Gardens, Charleston International Airport, and Savannah 

International Airport stations, respectively. Extreme precipitation events are days with 

rainfall totals greater than 2.34, 2.26, and 2.11 cm at Brookgreen Gardens, Charleston 

International Airport, and Savannah International Airport stations, respectively. 

 Observed weather data were compared to climate normal data to calculate 

seasonal and annual temperature and precipitation deviations from normal. These results 

were averaged across all three primary weather stations and reported in Figures 10 and 

11. Figure 10 displays the yearly deviations from normal with temperature on the y-axis 

and precipitation on the x-axis. This type of scatterplot allows for an assessment of warm 

and wet, warm and dry, cool and wet, and cool and dry years or seasons. Out of the last 

ten years of data (2008-2018), seven years were warmer, and eight years were drier than 

average. Climate data are then broken down into seasons and displayed in Figure 11. 

Seasonal data follow a similar pattern to annual data with more recent years found in the 

warm and dry quadrant. Figure 11 also serves as a visualization tool for assessing 

variation in the data. Data points for spring and summer are more tightly clustered than 

fall and winter data points meaning that more climate variability occurs in fall and winter 

than spring and summer.  Information can also be gathered from the shape of these data 

point clusters in Figure 11. For example, winter variability is greater along the 

temperature axis and fall variability is greater along the precipitation axis.  
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 The PDSI, PMDI, and PHDI all respond similarly during the study period; 

however, the Palmer Z-Index (ZNDX) stands out from other drought indices with 

pronounced, short-term fluctuations which demonstrates its ability to explain drought on 

shorter time frames (Figure 71). When comparing data between the two climate divisions, 

both regions of the South Carolina coast experience drought similarly. This suggests that 

drought occurs at a more regional scale than local weather observations. Standard 

precipitation indices (SPI) for the two climate divisions are broken down by the number 

of months included in the drought calculation; for example, SP01 describes a 1-month 

SPI value and SP24 describes a 24-month SPI value (Figure 72). Spikes in the SPI value 

become less pronounced as the months increase with SP12 and SP24 describing long 

term drought conditions across the landscape. As with the Palmer indices, SPI values 

differ little between the two climate divisions. These graphs can be used to identify 

drought years within the study period. Both Palmer and SPI drought indices show periods 

of drought in 2003, 2008, and 2012 with the most extreme drought occurring around 

2003.  

 Monthly climate teleconnection indices include the North Atlantic Oscillation 

(NAO), Arctic Oscillation (AO), Atlantic Multidecadal Oscillation (AMO), and the 

Oceanic Niño Index (ONI) (Figure 73). The NAO and AO demonstrate significant 

variability throughout the study period, whereas the AMO maintains a smooth upward 

(i.e., warming) trend. The ONI can be used to identify El Niño and La Niña years within 

the study period. El Niño is determined when the ONI is greater than 0.5, La Niña is 

determined when the ONI is less than -0.5, and values between -0.5 and 0.5 are deemed 

neutral phases. Pronounced El Niño events are seen in 2002-2003, 2009-2010, and 2015-
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2016, with the latter being the most intense. La Niña events in the study period have 

occurred in 1999-2000, 2007-2008, and 2010-2011. Years of La Niña and El Niño were 

identified in Figures 10 and 11. For example, the winter of 2010 was a strong La Niña 

year and had a noticeably cooler and wetter climate than other years of data.  

 

3.1.3. Environmental Data 

 

 Environmental data were compiled from a total of 811 SCECAP sites spanning 

South Carolina’s coast from 1999 to 2018. Four hundred-and-eight of these sites were 

classified as open water (channel width ≥100 m) and 403 were classified as tidal creek 

sites (channel width ≤100 m). Figure 3 displays the distribution of SCECAP sites along 

the South Carolina coast. A greater number of sites were sampled in the southern half of 

the state due to the region’s larger estuarine habitat. Sampling protocol changed in 2007, 

transitioning to 30 sites visited per year in contrast to the previous 50 to 60 sites. During 

the course of the study period, new environmental parameters have been added to 

SCECAP’s sampling protocol. For example, testing for PBDEs in sediment samples 

began in 2003 and testing for enterococci in the water column began in 2007. Channel 

width ranged in size from 11 m to over 11 km with an average width of 823 m. Station 

depth ranged from 0.3 to 17.6 m with an average depth of 3.7 m. Salinity ranged from 0 

to 41 ppt with an average of 28 ppt. pH ranged from 4.9 to 8.5 with an average of 7.5. 

These differences in habitat characteristics demonstrate the diversity of South Carolina’s 

estuaries. 
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3.2. Data Analysis 

 

3.2.1. t-Tests 

 

 Results from t-tests were compiled into Tables 3-9 and visualized as boxplots in 

Figures 12-26. Data were grouped by habitat type (open water vs. tidal creek), time 

period (1999-2008 vs. 2009-2018), and watershed development (developed vs. 

undeveloped). Tests between time periods and watershed development were run for all 

sites as well as split by habitat type. Environmental data were grouped into three 

categories – water quality, sediment quality, and biological quality. Statistical 

significance between group means were signified by asterisks in boxplots and bold text in 

tables.  

 Compared to open water sites, tidal creek sites displayed higher water 

temperatures, lower dissolved oxygen, lower pH, and higher levels of bacteria. Tidal 

creek sites also showed higher levels of sediment contamination. Looking at raw 

concentration data, metals, PAHs, and DDT were higher in sediments from tidal creeks 

than open water sites. When looking at ERMQ scores, metals, DDT, and the combined 

ERMQ were also on average higher in tidal creek sites than open water sites. Data on 

biological quality showed significant differences between these two habitat types. 

Despite being towed for half the distance of open water sites, trawls in tidal creeks 

exhibited higher species richness. Benthic species richness and abundance were higher in 

open water sites than tidal creek sites. Both benthic indices (i.e., BIBI and MAMBI) 

indicated healthier, less-stressed benthic communities in open water sites when compared 
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to tidal creek sites. These findings suggest that tidal creeks are in general more polluted 

and stressed habitats compared to open water sites. When comparing biological data 

between these two habitat types, nekton biodiversity is higher in tidal creeks and benthic 

biodiversity is higher in open water habitats. This could be the result of the gear used 

during SCECAP sampling as their trawl nets more effectively capture smaller fish and 

invertebrates which are more likely to be found in tidal creek habits.  

 Results from t-tests comparing environmental data between time periods (i.e., 

1999-2008 vs. 2009-2018) are displayed as boxplots (Figures 15-20) and data tables 

(Tables 4-6). Water temperature and enterococci concentrations were on average higher 

in 2009-2018 data and pH was on average lower in 2009-2018 data (see Figure 15). 

When broken down by habitat type, there were no significant differences between water 

quality parameter means across time periods in open water habitats (see Figure 17). In 

tidal creeks, water temperature and enterococci concentrations were on average higher in 

later years. When looking at sediment quality between time periods, PAH, DDT, and 

PBDE concentrations were on average higher in the second half of the study period (see 

Figure 17). In both tidal creeks and open water sites, DDT and PBDE concentrations 

were higher in later time periods (see Figure 18). PAH concentrations were higher in later 

time periods in tidal creeks but no difference was detected between time periods in open 

water sites. All biological quality variables showed significant differences in means 

between time periods (Figure 19). Nekton abundance and species richness, benthic 

abundance and species richness, and both benthic indices (BIBI and MAMBI) were on 

average lower in the later time period suggesting a decrease in biodiversity during the 

course of the study period. When broken down by habitat type, nekton abundance, nekton 
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species richness, and benthic species richness were lower in later years in both habitat 

types (see Figure 20). Benthic abundance was only significantly lower in later years in 

open water sites, and MAMBI was only significantly lower in later years in tidal creek 

sites.  

 Results from t-tests comparing environmental data between watershed 

development categories (i.e., developed vs. undeveloped) are displayed as boxplots 

(Figures 21-26) and data tables (Tables 7-9). Water temperature and fecal coliform 

concentrations were on average higher in developed watersheds, and dissolved oxygen 

and pH were on average higher in undeveloped watersheds (Figure 21). Open water sites 

in developed watersheds had higher pH, higher fecal coliform concentrations, and lower 

water temperature than open water sites in undeveloped watersheds. (Figure 22). Tidal 

creek sites in developed watersheds had on average higher dissolved oxygen and higher 

pH than tidal creek sites in undeveloped watersheds. Concentrations of metals, PAHs, 

PCBs, PBDEs, DDT were all on average higher in sediments from developed watersheds 

than sediments from undeveloped watersheds (Figure 23). When sediment quality data 

were broken down by habitat type, only open water sites showed significant differences 

in sediment contamination between developed and undeveloped watersheds (Figure 24). 

Nekton abundance was the only biological metric with significant differences between 

developed and undeveloped watersheds; sites from undeveloped watersheds had greater 

average nekton abundances than sites in developed watersheds, and this trend was 

significant in both open water and tidal creek sites (Figures 25 and 26).  
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3.2.2. Time Series Analysis 

 

 Results from time series analysis of weather and environment data are displayed 

as line plots in Figures 27-40. These figures are also accompanied by model outputs 

summarized in Tables 10-15. While water quality and sediment quality data experienced 

variation during study period, time series analysis did not reveal significant trendlines in 

these data (Figures 27-30). However, time series analysis on biological quality data 

produced significant trendlines. When all sites were analyzed together, nekton species 

richness, nekton abundance, benthic species richness, and MAMBI experienced a 

significant decline during the study period (Figure 31). When open water sites were 

analyzed separately, only nekton species richness and benthic species richness showed a 

significant decrease (Figure 32). In tidal creeks, significant negative trendlines were only 

observed in nekton species richness, nekton abundance, and MAMBI data (Figure 32).  

 Trends in weather data were also analyzed using time series regression; the results 

of which are represented by line plots (Figures 33-40) and model output tables (Tables 

14-15). Figures 33 and 34 display annual trends in temperature and precipitation. Annual 

average temperature in coastal South Carolina showed a significant increase during the 

study period (Figure 33). When weather data were averaged across all three stations, time 

series analysis on total annual precipitation did not produce a significant trendline (Figure 

33). When broken down into individual weather stations, only Charleston International 

Airport and Savannah International Airport stations demonstrated a significant increase in 

average annual temperature (Figure 34). Additionally, annual precipitation showed a 

significant, increasing trend at the Charleston International Airport station (Figure 34).  
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 In addition to annual weather data, time series analyses were run on seasonal 

weather patterns. Time series analysis did not produce significant trendlines when 

seasonal temperature data were analyzed by averaging all three weather stations (Figure 

35). However, Charleston International Airport and Savannah International Airport 

stations experienced significant increases in summer and fall temperatures during the 

study period (Figure 36). Additionally, time series analysis showed increasing spring 

temperature at the Savannah International Airport station but not at the other two stations. 

Time series analyses did not reveal significant trends in seasonal precipitation data 

averaged across all three weather stations (Figure 37). When seasonal precipitation data 

were analyzed by station, winter precipitation appeared to be increasing at the Savannah 

International Airport station (Figure 38). Changes in frequency of extreme temperature 

and precipitation events are shown in Figures 39 and 40. Time series analysis of the 

number of extreme temperature events over the study period did not produce a significant 

trendline; however, the number of extreme precipitation events per year experienced a 

significant increase over the course of the study period (Figure 39). Extreme weather data 

were also analyzed at the station level; however, only the Charleston International 

Airport station experienced a significant increase in extreme precipitation during the 

study period (Figure 40).  

 

3.2.3. Hot Spot Analysis 

 

 Hot spot analyses were performed for a subset of SCECAP environmental 

parameters summarized by 14-digit HUC watersheds and are displayed as maps in 
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Figures 41-52. Hot and cold spots are signified by the degree of confidence that a 

watershed is significantly different than its neighborhood (determined by the Gi* statistic) 

(Getis and Ord, 2010). In the case of sediment contaminants, hot spots represent 

watersheds with high levels of estuarine sediment contamination and cold spots represent 

watersheds with relatively unpolluted estuarine sediments. For biological data, hot spots 

are watersheds with greater biodiversity and benthic integrity within their estuaries and 

cold spots represent watersheds with degraded, estuarine biological communities. 

 Hot spot analyses helped reveal spatial patterns in the environmental dataset. For 

example, sediment contaminant and fecal coliform hot spots were more prominent in the 

central region of the South Carolina coast suggesting a correlation between the 

urbanization of the Charleston region and water and sediment contamination (Figures 42-

46). Spatial patterns among biological data were harder to discern. Data on benthic 

communities appeared to follow a latitudinal trend with benthic biodiversity increasing 

from north to south (Figures 49-52). Spatial trends in nekton community data, on the 

other hand, were less pronounced than benthic data (Figures 47-48). Hot spots of nekton 

richness appeared in the coastal region between Charleston and Beaufort (Figure 47). For 

nekton abundance data, only two watersheds along the southern coast were identified as 

hot spots (Figure 48). 

 

3.2.4. Multiple Linear Regression 

 

 A total of 209 multiple linear regression models were created during the stepwise 

regression modeling phase. Model inputs included 19 response variables and 106 
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explanatory variables, all analyzed at 11 different spatial scales. The full list of these 

inputs can be found in Appendices B, E, F, and G. Each multiple linear regression 

formula represented an environmental response variable (e.g., fecal coliform) with a list 

of explanatory variables (e.g., impervious cover), and was modelled by spatial unit of 

interest (e.g., 12-digit HUC watershed). The number of predictive terms (excluding 

intercepts) in these models ranged from 3 to 8 with an average of 5.4. This large set of 

stepwise-generated models served as the source for more detailed linear models and 

provided a dataset for meaningful meta-analyses.  

 

3.2.5. Model Meta-Analysis 

 

 Meta-analyses were performed on all stepwise regression outputs to reveal 

overarching trends in the data. Table 16 displays the R2 values averaged by response 

variable category and spatial unit of analysis. R2 values represent the proportion of 

variance explained by a model and were the chosen statistic to reflect goodness of fit. The 

average R2 among all 209 models was 0.30. The response variable category with the 

highest average R2 was sediment quality (R2=0.36), whereas biological quality models 

had the lowest average R2 (R2=0.22). On average, HUC watersheds produced the best 

models (R2=0.33), grids produced the worst models (R2=0.28), and buffers were 

somewhere in between (R2=0.31). Within each spatial grouping system, 3 km buffers, 

1600 km2 grids, and 10-digit HUCs resulted in the highest R2 values. Each response 

variable category had a different spatial unit of analysis that produced the highest R2 

values. Buffers with 2 km radii were best at explaining water quality models (R2=0.36), 
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10-digit HUCs were best at explaining sediment quality models (R2=0.40), and 12-digit 

HUCs were best at explaining biological quality models (R2=0.23). 

 While Table 16 summarizes general model performance, Tables 17-20 detail the 

frequencies and coefficient estimates of the independent parameters within the models. 

Across all models, variables representing physical habitat (e.g., salinity, channel size) 

appeared most frequently. Silt and clay content, for example, occurred in 61% of all 

models. Impervious cover was the most frequent landcover variable, followed by marsh 

and population density. Winter temperature and precipitation were selected as model 

variables more frequently than any other weather or climate variables. These meta-

analysis were also used to reveal temporal trends in the weather data. Water quality data 

were most often correlated with 2-day precipitation totals, biological quality data were 

most often correlated with temperature and precipitation values at 30- and 45-day 

intervals, and sediment quality data were most often correlated with seasonal weather 

patterns (e.g., winter precipitation). While this type of meta-analysis can help identify the 

most prevalent predictors, information can also be gathered from parameters that were 

featured infrequently or not at all. For example, hydrologic soil data and stormwater pond 

data appeared only sporadically throughout the modeling process. Additionally, some 

variables such as the Oceanic Niño Index (ONI) or Palmer Z-Index (ZNDX) did not 

appear at all.  

 Tables 17-20 also provide mean coefficient estimates. Mean coefficient estimates 

were calculated by averaging coefficient estimates for each parameter across all models 

and were used to reveal generalized correlations among the data. For example, channel 

width, depth, and salinity were all negatively correlated with water quality response 
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variables suggesting smaller and less saline estuaries experienced higher levels of water 

quality impairment (e.g., bacterial contamination). Marshes, on average, were negatively 

correlated with measures of pollution and positively correlated with measures of 

biological integrity. This suggests the presence of marshes were correlated with better 

environmental condition. On the other hand, development-related explanatory variables 

were positively associated with measures of pollution and negatively associated with 

measures of biological integrity.  

 

3.2.6. Final Model Selection and Refinement 

 

 Out of the 209 models produced through stepwise regression, 13 were chosen for 

further refinement. Each of the 13 final models represented a different response variable 

selected by the spatial scale with the highest adjusted R2. Some response variables were 

excluded altogether during this stage. For example, contaminants measured by their 

ERMQs produced models with higher R2 values than their raw concentration 

counterparts; as a result, only the ERMQ sediment contamination data were included in 

the final set of models. Models of PBDE contamination were excluded altogether from 

the final set of models because no ERMQ scores were available for this contaminant. 

Although the BIBI was specifically calibrated for estuaries in the Southeastern United 

States, MAMBI was ultimately selected as the preferred benthic index for the final 

modeling stage because of its better modeling performance (i.e., higher R2 values).  

 Tables 21-24 provide detailed model diagnostics and summaries of these final 

models. Table 21 displays model outputs for ERMQ scores for four categories of 
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contaminants (DDT, metals, PAHs, PCBs) as well as a combined ERMQ score for all 

contaminants. These variables were all modelled at the 10-digit HUC watershed scale. 

Adjusted R2 values for these models ranged from 0.17 (DDT) to 0.82 (metals). Sediment 

composition was strongly correlated with levels of sediment contamination, and higher 

TOC and silt-clay content in samples were associated with higher levels of sediment 

contamination. Winter and spring precipitation were positively correlated with 

contaminant levels in sediments collected during the summer months, and winter 

temperature and fall precipitation were negatively correlated with contaminant levels. In 

some models, significant interaction effects were observed. For example, the interaction 

between winter precipitation and winter temperature was negatively correlated with 

PAHs, and the interaction between spring precipitation and winter temperature was 

negatively correlated with PCBs. These interactions suggest that wet winters and wet 

springs are positively correlated with sediment contamination unless these conditions 

cooccur with warm winters. Measures of human activity in the watershed, such as 

impervious cover or population density, were positively correlated with sediment 

contamination.  

 Table 22 displays the results of bacterial contamination modelled using 2 km 

buffers. The fecal coliform response variable created a much better model (R2=0.46) than 

enterococci levels (R2=0.24); different sample sizes between these variables could be one 

explanation for different model performance since enterococci data only go back to 2007. 

Lower salinity systems with smaller channel sizes were correlated with higher levels of 

bacteria. Percent of impervious surface cover was also positively correlated with bacteria 

levels. Forty-eight-hour precipitation totals from the nearest weather station proved to be 
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the most significant weather-related predictor variable, indicating that peak bacteria 

levels are found two days following a rain event.  

 Trawl nekton data were analyzed at the 12-digit HUC level and are summarized 

in Table 23. Nekton abundance had the highest R2 of these models (R2=0.18) and tidal 

creek nekton species richness had the lowest (R2=0.15). Parameters of watershed 

development were notably absent from nekton models, with the exception of the nekton 

abundance model in which impervious cover was negatively correlated with abundance. 

The North Atlantic Oscillation (NAO) index was significantly correlated with nekton 

abundance and nekton species richness; the only instance of a climate teleconnection 

making it into the final models. Channel width was negatively correlated with all three 

nekton models suggesting higher nekton biodiversity in smaller-channel estuarine 

habitats. Annual temperature averages were negatively correlated with species richness in 

both tidal creek and open water habitats. In tidal creeks, annual average temperature from 

the preceding year was most significant, and in open water sites, annual average 

temperature from the current year was most significant.  

 Model results for benthic data are displayed in Table 24. Physiographic data in 

benthic abundance and benthic species richness models were analyzed by 12-digit HUC; 

however, landcover in the MAMBI model were analyzed by 400 km2 grid cells. Overall, 

benthic models performed better than nekton models. R2 values for benthic abundance, 

species richness, and MAMBI models were R2=0.19, R2=0.42, and R2=0.47, respectively. 

Benthic models were the only cases of development being associated with better 

environmental outcomes. Low intensity development and developed open spaces were 

both positively correlated with benthic species richness and MAMBI. However, high 



 49 

intensity development was negatively correlated with MAMBI values. According to these 

models, benthic community data are best explained by 45-day precipitation and 90-day 

temperature patterns. At these time scales, warmer and drier conditions were correlated 

with lowered measures of benthic biodiversity. Benthic models were also strongly tied to 

physical habitat characteristics, with larger channels and more saline conditions 

producing higher measures of benthic health.  

 

3.2.7. Predictive Modeling  

 

 A total of 15 scenarios were created for predictive modeling. These scenarios 

represent different combinations of precipitation change, temperature change, and 

population growth under high and low projections (Table 26). Table 25 summarizes the 

predictions used to define these scenarios. The population of South Carolina’s coastal 

counties is expected to increase 2.8 million by 2065 under a sustainable growth scenario 

(SSP1) and 3.4 million under a fossil-fueled growth scenario (SSP5) (Hauer, 2019). 

When compared to the 1.2 million people counted in 2010 Census, SSP1 and SSP5 

growth scenarios would account for an increase of 130% and 180%, respectively. 

Assuming a 1:1 relationship with population, developed landcover and impervious 

surfaces were also increased by 130% and 180% in these scenarios. In reality, population 

growth and landcover changes may not be exhibit a perfect 1:1 linear relationship; 

however, slopes of increasing population and developed landcover were roughly parallel 

over the course of the study period which helped justify this assumption (Figures 68 and 

69). According to 2011 NLCD data, impervious surfaces covered 2.59% and developed 
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landcover covered 9.89% of coastal South Carolina counties. Under the higher population 

projection (+180%), these values are predicted to increase to 7.26% impervious cover and 

27.69% developed landcover by 2065. 

 Temperature and precipitation predictions were based on climate change 

projections from the Fourth National Climate Assessment (NCA) report (USGCRP, 

2017). According to this report’s projections for the mid-21st century (2065), average 

temperature in the Southeast is expected to increase by 1.9 °C under the low emission 

scenario (RCP4.5) and 2.4 °C under the high emission scenario (RCP8.5). When this 

change was applied to 30-year climate normals for coastal South Carolina, the annual 

average temperature (19.0 °C) increased by 5% (20.9 °C) in the low projection and by 

6.5% (21.4 °C) in the high projection. The NCA report also predicts an increase in 

precipitation by 5-10% for the Southeast by 2065. According to the 30-year climate 

normal data, average annual precipitation for coastal South Carolina is 129.7 cm. This 

value would increase to 136.4 and 142.8 cm at the low (+5%) and high (+10%) end of 

NCA’s projections, respectively. Although changes in precipitation will likely exhibit 

seasonal variation, projected increases in annual precipitation totals were evenly 

distributed across seasons in these scenarios. 

 Predicted outcomes from these scenarios were entered as parameters into the final 

set of linear models, and the resulting model outputs were summarized into Tables 27-38. 

On average, response variables from open water sites experienced greater changes than 

those from tidal creeks under these scenarios. Additionally, water quality values (i.e., 

bacterial contamination) experienced the greatest increase under these scenarios. Levels 

of sediment contamination and bacteria concentrations increased under change scenarios, 
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whereas measures of biological quality decreased. Together, these predictions point to a 

decline in the overall quality of the estuarine environment under climate change and 

population growth. Changes to temperature, precipitation, and population were modelled 

individually in some scenarios to isolate their potential effects. On average, changes to 

precipitation resulted in the lowest amount of observed change in response variable 

predictions and changes to temperature resulted in the highest amount of observed change 

in response variable predictions. The scenario resulting in the greatest amount of change 

within response variable predictions was Scenario 14 which included population growth, 

temperature change, and precipitation changes under the highest projections.  

 Figures 53-65 display the predicted outcomes of each response variable under 

these different change scenarios. These figures helped visualize predictions and their 

confidence intervals alongside baseline conditions. Confidence intervals were 

extrapolated from error terms within the original linear models and varied from response 

to response. Interpretations of scenario outcomes should be made with caution in cases 

where confidence intervals of a prediction overlap the confidence intervals of the 

baseline.  

 Although enterococci and fecal coliform levels both increased within change 

scenarios, each responded differently to change (Figures 53 and 54). Temperature change 

was the primary driver for increased enterococci whereas population growth was 

responsible for increases in fecal coliform bacteria. Each bacteria model included 

precipitation as a predictor; however, projected increases in precipitation were not 

adequate to significantly increase bacteria levels above the baseline.  
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 Scenario predictions of sediment contamination are displayed in Figures 55-59. In 

these sediment models, population had the greatest influence on the predicted response. 

With the exception of DDT, population growth resulted in levels of sediment 

contamination significantly higher than the baseline. Increases to temperature resulted in 

lowered predictions of sediment contamination. Temperature-driven changes in PAHs, 

PCBs, and combined ERMQ scores were significantly lower than the baseline value. 

Although precipitation was included in these sediment models, changes to precipitation 

did not result in significant differences from baseline conditions. Changes to precipitation 

alone might not result in significantly higher levels of sediment contamination, but it may 

interact with population growth and result in more contaminated estuarine sediments.  

 Biological responses to change scenarios were more variable than water quality 

and sediment quality models (Figures 60-65). Nekton abundance was less than baseline 

in all predicted scenarios; however, only scenarios which included temperature change 

resulted in nekton abundance predictions with confidence intervals outside the baseline. 

Nekton species richness, in both habitat types, decreased from baseline conditions in all 

scenarios, although precipitation and population changes resulted in species richness 

predictions with confidence intervals overlapping baseline values. Benthic abundance 

predictions increased under all scenarios; however, due to the high level of uncertainty in 

the benthic model, none of the predictions were significantly above baseline. Benthic 

species richness predictions were significantly higher than baseline conditions in 

population growth scenarios except scenarios included temperature change. Temperature 

increases, with or without changes to precipitation, resulted in benthic species richness 

predictions significantly lower than baseline. MAMBI responses to scenarios were 



 53 

similar to benthic species richness models except all scenarios which included population 

growth resulted in significantly higher-than-baseline MAMBI predictions. Both high 

intensity development and developed open spaces were included as explanatory variables 

in the MAMBI model. In the MAMBI model, developed open space landcover was 

positively correlated and high intensity developed landcover negatively correlated with 

MAMBI values. According to these predictions, the positive effect of developed open 

space landcover on MAMBI values outweighed the negative correlation between high 

intensity developed landcover and MAMBI values. Increases to temperature, with or 

without precipitation change, resulted in significantly lower MAMBI predictions.  
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CHAPTER 4. DISCUSSION 

 

4.1. A Changing South Carolina Coast 

 

 Landcover and population data collected and analyzed for this project 

demonstrated significant changes to South Carolina’s coastal landscape during the study 

period. Between 2000 and 2018, the population of coastal South Carolina has grown by 

nearly half a million – a 46% increase (Table 39). This growth rate outpaced the 

nationwide increase of 16% during the same time period (US Census Bureau, 2018). 

NLCD data show that measures of development (e.g., impervious surface cover) have 

risen in tandem with this population growth (Figures 68 and 69). A closer look at Figure 

68 shows that the sharpest increase in impervious surface cover occurred between 2001 

and 2006. This could suggest that conversion of landcover precedes population growth, 

and perhaps that the rate of urbanization will plateau as more people move into the 

region. Nevertheless, impervious cover continued to climb during the later years of data, 

albeit at a slower rate. Results from this project were compared with previous studies 

which have explored the issue of population growth and landcover change in coastal 

South Carolina.   

 In 2003, Allen and Lu recognized a rapidly growing coastal population and 

created a GIS model of urban growth for the Charleston Tri-County area (Berkeley, 
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Charleston, and Dorchester counties). Allen and Lu predicted a population of 795,879 in 

the Tri-County region by the year 2030. In 2018, more than ten years ahead of their 

predictions, this area already had an estimated population of 787,643 (Table 39). In their 

paper, Allen and Lu also modelled urban expansion in the Tri-County area and predicted 

the urban zone would expand from 75,887 ha in 2000 to 170,680 ha by 2020. The authors 

used a different set of spatial data and tools from this project; therefore, direct 

comparisons were not made between their predictions and this project’s NLCD-derived 

data. However, it may still be worthwhile to compare percent changes between similar 

time periods. Allen and Lu’s projection resulted in a 125% increase of urban area 

between 2000 and 2020. In comparison, NLCD developed landcover for the Tri-County 

area increased from 70,823 to 80,450 ha, or 14%, between 2001 and 2016. While the 

current population of the Charleston metropolitan area has surpassed their predictions, 

Allen and Lu may have overestimated the rate of urban sprawl.    

 Exploring non-development landcover types proved to be a worthwhile exercise 

and helped create a more holistic picture of coastal change in South Carolina. Despite 

rapidly growing urban areas such as Charleston or Horry counties, much of coastal South 

Carolina remains a largely natural landscape with two-thirds of coastal area covered in 

forest (Table 1). Overall, these landcover analyses revealed a patchwork of urban, rural, 

and natural landscapes across coastal South Carolina. This gradient of development 

intensity served as an important foundation for subsequent data analysis relating 

urbanization and estuarine environmental condition.  

 The only non-development landcover type that experienced a net increase during 

the study period was open water. Sea-level rise and other forms of coastal erosion may 
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very well be responsible for this increase. To some extent, rising sea levels will be met 

with inland marsh migration (Feagin et al., 2010). However, the ongoing urban 

conversion of land within the coastal zone can impede this natural transition as 

infrastructure could prevent inland marsh migration in a process referred to as the 

“coastal squeeze” (Torio and Chmura, 2013). Open water experienced a net increase of 

5,562 ha, while marshes experienced a net decrease of 3,987 ha (Figure 8). As 

development continues along the marsh’s edge, this boundary between water and 

wetlands will prove critical under a changing climate. To account for sea level rise and 

marsh migration, future growth should consider wider buffers of forest between marsh 

and development or designating green space and conservation areas to allow for future 

migration pathways. 

 While sea level rise is and will continue to be a serious challenge for coastal 

communities, this study was more focused on understanding climate change’s impacts on 

weather, particularly changes to temperature and precipitation. Data gathered on 

temperature and precipitation over the study period revealed broad patterns of change 

across South Carolina’s coast consistent with climate predictions (Mizzell et al., 2014). 

By focusing on three long-term weather stations (Brookgreen Gardens, Charleston 

International Airport, and Savannah International Airport), this project was able to 

explore climate change trends specific to coastal South Carolina. Time series analyses 

proved to be a useful tool in demonstrating changes in weather during the study period. 

From 1895 to 2016, annual average temperature in the contiguous United States has 

increased by 0.7-1.0 ºC (Vose et al., 2017). However, changes in temperature were not 

uniform across the United States, and out of all the regions, the Southeast experienced the 
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smallest annual average increase in temperature (0.26 ºC) (Vose et al., 2017). Time series 

analyses aligned with these studies and indicated a significant increasing trend in annual 

average temperature during 1999-2018 for coastal South Carolina (0.03-0.07 ºC/year, 

Table 14). When broken down by station, all but the Brookgreen Gardens station 

experienced this significant increase. The urban heat island effect may be one explanation 

for these differences in trends. While Charleston International Airport and Savannah 

International Airport stations are situated within metropolitan areas, the area surrounding 

the Brookgreen Gardens station is much less urbanized. Changes in average temperatures 

by season were less consistent. When all three stations were analyzed together, no 

significant changes in seasonal temperatures were observed (Figure 35). But when 

analyzed separately, both Charleston International Airport and Savannah International 

Airport stations experienced increasing summer and fall temperatures. While annual 

average temperature may be rising, seasonal warming trends appear to be more variable. 

 Annual precipitation increased by approximately 4% in the United States between 

1901 and 2015; however, changes in precipitation varied considerably region to region 

and season to season (Easterling et al., 2017). Although precipitation is expected to 

increase by 5-10% in the Southeast by the mid-21st century, time series analyses of past 

weather data did not indicate significant changes in precipitation during the study period. 

The one exception was a significant trend of increasing winter precipitation observed at 

the Savannah International Airport station (Figure 38). Out of all the seasons, the NCA 

projects greater increases in precipitation in the Southeast during winter months 

(Easterling et al., 2017). The significant increase in winter precipitation observed at the 

Savannah International Airport station may be one indication of this seasonal pattern.  
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 As coastal South Carolina becomes warmer and wetter, the frequency of extreme 

weather events is also expected to increase due to climate change. This project defined 

extreme weather as daily temperature maximums and 24-hour precipitation totals above 

the 95th percentile of observations from the 1999-2018 weather dataset (Table 2). Time 

series analyses were run on the number of extreme weather events per year to explore 

changes in extreme weather during the study period. Although the NCA predicts heat 

waves will increase in intensity and frequency due to climate change, no significant 

trends in extreme temperature events were observed in this project’s dataset (Figures 39 

and 40) (Vose et al., 2017).  

 In addition to extreme temperature, the frequency and intensity of extreme 

precipitation events are also expected to increase due to climate change. The Southeast 

alone may see up to a 21% increase in extreme precipitation events (Easterling et al., 

2017). Time series analysis aligned with this projection and revealed a significant 

increasing trend in extreme precipitation across coastal South Carolina during the study 

period (Figure 39). The trendline from this analysis indicated that the frequency of 

extreme precipitation events has increased by one day every four years over the course of 

the study period (Figure 39, Table 15).  

 The purpose of analyzing historic weather data was to explore local weather 

patterns in the context of regional climate models and investigate how these trends may 

influence local environmental quality. Nonetheless, results from time series analysis 

corroborated trends established in the literature. Coastal South Carolina is becoming 

warmer, and while trends in precipitation may be subtle, the observed increase in extreme 

precipitation has important implications for the coastal environment.  



 59 

4.2. Exploratory Data Analysis  

 

 The results from the t-tests demonstrated that environmental quality in South 

Carolina estuaries vary spatially (Tables 7-9) and temporally (Tables 4-6). Table 7 shows 

that estuarine sediments from developed watersheds had significantly higher DDT, metal, 

PAH, and PCB concentrations than samples from undeveloped watersheds. In 1995, 

Sanger and others (1999a, 1999b) tested sediments for the same set of contaminants in 28 

tidal creeks along South Carolina’s coast and found higher concentrations of 

contaminants in samples from urban watersheds than those collected in forested 

watersheds. With over 800 sample sites and 20 years of data, this project has shown that 

the link between urban watersheds and contaminated estuarine sediments persists at a 

much larger scale than Sanger and others’ (1999a, 1999b) original findings. Sanger and 

others (1999a, 1999b) focused on headwater portions of tidal creeks as the primary link 

between uplands and coastal systems; however, these results indicate that open water 

sites are just as vulnerable to contamination from developed watersheds – a relationship 

also noted by Van Dolah and others (2008). 

 In addition to sediment contamination, higher levels of fecal coliform bacteria 

were detected in the water column of estuaries draining developed watersheds than those 

draining undeveloped watersheds (Table 7). This pattern of bacterial contamination in 

South Carolina’s urbanized estuaries has been previously established in the literature 

(Kelsey et al., 2004; Holland et al., 2004; Van Dolah et al., 2008). Enterococcus bacteria 

were also sampled, but no significant difference was detected between concentrations in 

developed versus undeveloped watersheds. As enterococci data were only available post 
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2007, differing sample sizes between enterococci (N=337) and fecal coliform data 

(N=799) could be responsible for the differences in results between these two indicator 

bacteria.  

 A key finding in Holland others’ 2004 study was in the biological response to 

watershed development. They found lower abundances of stress- and pollution-sensitive 

benthic invertebrates and lower abundances of Penaeoid species (i.e., shrimp) in tidal 

creeks draining more developed watersheds. However, t-tests in this study compared 

measures of biodiversity between developed and undeveloped watersheds did not identify 

significant differences (Figures 25 and 26). Summarizing biological data at the scale of 

overall species richness and abundance may have been too coarse to reflect the estuarine 

ecosystem. Benthic indices (e.g., BIBI), which have been proven to be useful indicators 

of watershed development on estuarine health, were also not significantly different 

between developed and undeveloped watersheds in these t-test analyses (Hale et al., 

2004). Although this study’s t-test analyses did not reveal significant differences in 

biodiversity between developed and undeveloped watersheds, significant temporal 

patterns were observed in the biological data.  

 t-tests between earlier and later halves of SCECAP data (1999-2008 versus 2009-

2018) revealed significant declines in biological condition in South Carolina’s estuaries 

(Tables 4-6). Species richness and abundance in both nekton and benthic communities 

were significantly lower in later years. The BIBI and MAMBI, which measure the 

biological integrity of benthic communities, also declined in the latter half of this study 

period. This observed decline in biodiversity in South Carolina’s estuaries was followed 

up with time series analyses to better evaluate changes in the data over time.  
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 Time series GLS regression of nekton species richness, nekton abundance, 

benthic species richness, and MAMBI data produced significant, negative trendlines over 

the study period (Figure 31). The fact that benthic species richness declined while 

abundance remained stable may signify changes within the benthic community structure. 

For example, generalist species may be filling in the gaps left behind by specialist species 

displaced by a rapidly changing habitat. This “functional homogenization” has been 

observed in ecosystems around the globe as a result of climate change and habitat 

disturbances (Clavel et al., 2011). Time series analysis results varied when biodiversity 

data were analyzed by habitat type (Figure 32). Open water sites only experienced a 

decline in nekton and benthic species richness, and tidal creek sites only experienced a 

decline in nekton species richness, nekton abundance, and MAMBI. Habitat differences 

between tidal creek and open water sites are likely responsible for these different 

responses. Additional data analyses included physical habitat parameters (e.g., channel 

size, salinity) to better explain changes in the biological data across all habitat types. 

Estuarine and marine ecosystems around the globe are experiencing a decline in 

biodiversity (Lotze et al., 2006; Worm et al., 2006). This observed trend of declining 

biodiversity within South Carolina’s estuaries should alarm researchers and natural 

resource managers alike and certainly warrants further investigation. However, SCECAP 

early data suggests higher than average trawl catches and benthic invertebrate counts in 

2019.  

 In addition to t-tests and time series analyses, hot spot analysis proved to be 

another important exploratory tool to identify trends in the environmental data. Figures 

42-52 offer quick, visual tools to assess the environmental condition of South Carolina’s 
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coast based on a subset of parameters. To help explain geographic patterns within the 

environmental data, coastal South Carolina was divided into three regions – the Grand 

Strand (Horry and Georgetown counties), the Tri-County (Berkeley, Charleston, and 

Dorchester counties), and the Lowcountry (Beaufort, Colleton, and Jasper counties). In 

measures of sediment contamination (ERMQ), hot spots were often located in the Tri-

County whereas cold spots were often located in the Lowcountry (Figures 42-46). 

Although comparable in area, 54% of South Carolina’s coastal population live within the 

Tri-County whereas only 18% reside in the Lowcountry (Table 39). Differences in 

population are a likely explanation for the observed distribution of hot and cold spots in 

sediment contaminant data. While areas like Myrtle Beach are highly developed, the 

Grand Strand does not stand out as either a cold or hot spot in most of these analyses. 

Tidal amplitudes in South Carolina, as well as resulting estuarine area, increase from 

north to south; as a result, fewer SCECAP sites are located in the northern part of the 

coast. More limited data may be one explanation for the lack of sediment contaminant hot 

spots in the Grand Strand. Estuaries along the Grand Strand are also in closer proximity 

to the open ocean and beaches, and these contaminants may be dispersing and diluting in 

the swash zone (Jackson et al., 2017).  

 Hot spot analysis results from biological data were less predictable. Hot and cold 

spots of nekton species richness and abundance data were sporadically distributed along 

the coast (Figures 47 and 48). Benthic data, on the other hand, seemed to follow a 

latitudinal gradient. Cold spots of benthic species richness and MAMBI were found in 

watersheds in the northern region of the coast, while Lowcountry watersheds reliably 

produced hot spots (Figures 49 and 52). Although trends in benthic abundance and BIBI 
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hot spots were less discernable, benthic biodiversity appeared to increase southward 

along South Carolina’s coast (Figures 50 and 51). This could be the result of a larger, 

more diverse estuarine habitat and a smaller anthropogenic footprint in Lowcountry 

watersheds.   

 Hot spot analysis, time series regression, and t-tests represented the first steps in 

analyzing the environmental dataset. Generally, measures of pollution (e.g., ERMQs, 

fecal coliform) varied spatially and reflected patterns of urbanization, whereas measures 

of biodiversity (e.g., nekton species richness, MAMBI) varied temporally and signaled an 

ecosystem in decline. As population growth and climate change pose compounding 

threats for the state’s coastal ecosystems, these trends have important implications for 

South Carolina. By modeling historic environmental data with landcover and climate, this 

project delved deeper into the data to uncover the underlying mechanisms behind these 

observed trends. 

  

4.3. Stepwise Regression and Model Meta-Analysis 

 

 Stepwise linear regression proved to be an invaluable tool to reduce the total 

variable pool and identify key variables. Care was taken to not rely too heavily on 

automated models and to ensure that selected variables were meaningful and 

interpretable. Freedman’s Paradox states that when modeling with a large enough set of 

predictor variables, significance may appear randomly during the variable selection 

process (Lukacs et al., 2010). Recognizing these potential pitfalls, this project used a 

combination of automated and supervised linear modeling approaches. Stepwise 
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regression was used to handle the bulk of data, while a select set of models were fine-

tuned by hand to best characterize the estuarine environmental response to landcover and 

climate. 

 One benefit of stepwise regression was the potential for meta-analyses on a large 

dataset of linear model outputs. Meta-analyses helped answer some important research 

questions such as the effect of spatial scales on model results. Multiple spatial units (i.e., 

HUC watersheds, grid cells, and buffers) at multiple sizes (e.g., 12-digit, 400 km2, 3 km) 

were used to explain the effects of land use and landcover on environmental response 

variables. With R2 as the chosen statistic to represent model performance, models across 

each category of response variable and spatial unit of analysis were summarized in Table 

16. Overall, HUC watersheds produced the best models. Grid cells, on the other hand, 

produced the worst models. Grid cells were generated in ArcMap to mimic HUC 

watersheds in size while offering a uniform, pixelized system of analyzing landcover 

data. The fact that grid cells produced models with lower R2 values than HUC watersheds 

provides further evidence for the hydrologic connection between uplands and 

downstream estuarine environment. On average, R2 values from models using circular 

buffers were in between R2 values of models using HUC watersheds and grid cells. 

However, when broken down by response variable category, buffers outperformed other 

spatial units in explaining water quality models.  

 The purpose of including buffers in this study was to explore the localized effect 

of landcover on environmental responses. In fecal coliform and enterococci models, 

impervious cover within a 1-3 km radius (314-2,287 ha) was more influential than 

impervious cover analyzed at the watershed scale. There could be many explanations for 
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this pattern. These indicator bacteria, carried by stormwater, may be dying off as they 

travel downstream, and as a result can only be detected in close proximity to their source 

(Anderson et al., 2005). Sediment contaminants, on the other hand, are more persistent in 

the estuarine environment (Farmer, 1991). Ten-digit HUC watersheds produced the best 

sediment quality models, which on average delineate an area of 51,632 ha in coastal 

South Carolina. While bacteria levels responded to landcover within the immediate 

surroundings, sediment contamination responded to landcover at large spatial scales. 

These models suggest organic and nonorganic pollutants from upland development travel 

long distances throughout the region’s estuaries before settling out in the sediment. The 

effects of spatial scale were less clear for the biological quality models. 12-digit HUC 

watersheds seemed to produce the best biological models, but a few models of benthic 

data were best explained by landcover analyzed by 400 km2 grid cells. Differences 

between nekton and benthic responses were expected as nekton can move in response to 

environmental stressors whereas benthic invertebrates are relatively sessile.  

 Additional meta-analyses summarized the frequency of independent variables 

within the stepwise-produced models (Tables 17-20). The three most frequent 

independent variables were silt-clay content, salinity, and channel width – all measures of 

physical habitat. While these variables are unlikely to change with population growth or 

climate change, they were essential in environmental modeling to control for the large 

variation in habitat across the study area. For example, silt-clay content figured 

prominently in the sediment quality models. Due to clay’s high cation exchange capacity 

and greater surface area, sediments with higher silt and clay content are more likely to 
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attract metal and, to some extent, organic pollutants (Kowalska et al., 1994; Uddin, 

2017).  

 The two most frequent landcover variables were upland impervious cover and 

marsh. The fact that impervious cover was more prevalent than other measures of 

development provides further evidence for stormwater runoff being responsible for the 

observed declines in estuarine habitat quality. While population density was a significant 

variable in some models, on average, impervious cover was a better predictor in these 

models. Measures of natural landcover types also proved to be important in these models. 

For example, presence of marshes were positively correlated with measures of 

biodiversity and negatively correlated with presence of contaminants. This observation 

may indicate the role marshes play in maintaining water quality and buffering pollution. 

Salt marshes have been shown to intercept excess nutrients from entering coastal waters 

(Brin et al., 2010). Marshlands provide many other ecosystem services for coastal 

residents such as protection from storm surge and coastal erosion. These models 

demonstrated a correlation between marsh landcover and better estuarine habitat quality, 

thus providing additional justification for protecting and preserving marshland habitats. 

Artificial stormwater infrastructure (i.e., stormwater ponds), on the other hand, were 

absent as predictor variables during the modeling process raising questions about their 

efficacy.  
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4.4. Water Quality Models 

 

 The final set of bacteria models included landcover analyzed at 2 km buffers. This 

scale was used because it provided the best predictive capacity among the 1 km, 3 km, 

and various HUC and grids tested (Table 22). Out of the 1- to 90-day precipitation totals 

included in the model selection process, 2-day precipitation totals were the most 

significant predictors in both enterococci and fecal coliform models. Interestingly, this 2-

day precipitation signal matched earlier studies. Kelsey and others (2004) modelled fecal 

coliform concentrations in Murrells Inlet (an estuary in South Carolina) with 1- to 14-day 

precipitation totals and found 2-day precipitation totals to be the best predictor of 

bacteria. The Palmer Drought Severity Index (PDSI) was also a significant predictor in 

the fecal coliform model. In this model, the PDSI was negatively correlated with bacteria 

concentrations meaning higher levels of bacteria were observed during drought 

conditions. Although this may seem inconsistent with the effect of 2-day precipitation 

totals, heavy precipitation events during dry conditions may lead to runoff carrying a 

greater load of accumulated contaminants from upland sources. This “first flush” effect 

has been studied in urban watersheds where the highest levels of fecal coliform bacteria 

were observed in stormwater at the onset of rain events (Hathaway and Hunt, 2011). 

 Fecal bacteria in waterways can have many sources including failing septic tanks, 

pet waste, surface runoff, livestock, or wildlife. Webster and others (2004) sampled E. 

coli bacteria from South Carolina’s estuaries and tested for antibiotic resistance to 

differentiate between human and non-human sources. Although non-human sources of 

bacteria were identified in some rural watersheds, bacteria sampled from urban 
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watersheds were more significantly tied to human sources (Webster et al., 2004). Without 

these molecular tools, it is not be possible to identify the sources of bacteria measured in 

this project without relying on correlative analysis. In both bacteria models, upland 

impervious cover was positively correlated with bacteria concentration suggesting an 

anthropogenic source of contamination. However, mixed forest landcover was also 

positively correlated with fecal coliform concentration which may indicate a wildlife 

signal.  

 

4.5. Sediment Quality Models 

  

 Population density and impervious surface cover were significant predictors in 

sediment quality models, and both were positively correlated with sediment 

contamination. This positive correlation provides further evidence linking urbanized 

watersheds and polluted estuaries. Van Dolah and others (2008) modelled this same suite 

of contaminants in estuarine sediments across South Carolina and identified similar 

connections. In their study, the authors analyzed data on landcover and sediment 

contamination by 14-digit HUC watersheds and found higher levels of sediment 

contamination in estuaries draining urban-suburban watersheds. Van Dolah and others 

(2008) shared some of the same data as this project including 180 SCECAP stations 

sampled from 1999-2002. This project expanded this dataset to include over 800 

SCECAP stations sampled from 1999-2018 and found the relationships observed by Van 

Dolah and others (2008) continuing into the present. Additionally, this project analyzed 

landcover variables at multiple spatial scales and found 10-digit HUC watersheds to be 
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the most effective unit of analysis. This suggests the effects of urbanization are farther 

reaching than Van Dolah and others (2008) had originally proposed.  

 The silt-clay content of sediment samples featured prominently in these models 

(Table 21) because samples with finer grain size tend to sorb pollutants more readily than 

coarser grained samples (Ackerman et al., 1983; Kowalska et al., 1994; Uddin, 2017). 

Although silt-clay content was responsible for much of the variation within the sediment 

quality models, by controlling for this factor, other relationships were able to be 

quantified. This includes explaining the overall variation of habitats when modeling 

effects of landcover and climate on sediment response variables. 

 Several variables of weather and climate were also featured in the sediment 

quality models. Winter precipitation, in particular, was positively correlated with three 

out of the five ERMQ models. The prevalence of winter precipitation as a predictor was 

one of the more interesting findings in this project. Winter precipitation occurred as a 

significant predictor in 32% of all models making it the most frequent weather or climate 

independent variable (Table 20). If runoff is the mechanism by which contaminants move 

from developed upland areas to downstream estuarine sediments, then there are several 

possible explanations for this correlation between wet winters and higher ERMQ values.  

As deciduous vegetation cover decreases in winter months, more rainfall is converted 

into runoff due to less interception in the canopy (Xiao et al., 2000). However, the 

majority of forest type in coastal South Carolina is evergreen and heavy rainfall events 

are more typical of summer thunderstorms than winter precipitation.  

 Another possible explanation for this association between wet winters and higher 

ERMQ values may be biological. Constructed wetlands have been successfully used in 
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wastewater treatment because microbial communities within the rhizosphere are 

particularly adept at breaking down and assimilating excess nutrients and organic 

pollutants (Stottmeister et al., 2003; Vymazal, 2007). These biological processes become 

less active during cold months which could explain this seasonal pattern (Zou et al., 

2016). With this explanation, surface runoff could be transporting contaminants into 

estuaries year-round, but in warm months, contaminants are broken down by an active 

biological community before settling in the sediment. However, the compounds studied 

in this project were selected in part due to their persistence in the environment and 

biological degradation may not be significant enough to explain these seasonal patterns.  

 The prevalence of winter precipitation as a predictor in these sediment 

contaminant models may also be a reflection of seasonality in the distribution of these 

compounds. PAHs, for example, have been found in higher concentrations during winter 

months as a result of increased energy consumption (e.g., home heating) and lowered 

rates of photodegradation (Bandowe et al., 2014). These compounds can also be stored on 

plant tissue and may become remobilized during the winter season as plants senesce 

(Simonich and Hites, 1994). Thus, precipitation may have a greater potential to mobilize 

these contaminants into the estuarine environment during the winter.  

 The use of the insecticide DDT was banned in the United States in 1972; 

however, it was included in the final set of sediment quality models because of its status 

as a legacy contaminant. Nearly 50 years after it was banned, DDT and its metabolites 

are still being detected in South Carolina’s estuarine sediments. Both agricultural and 

impervious surface cover were positively correlated with DDT ERMQ scores suggesting 
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that human alteration of watersheds, both agricultural and urban, can have lasting impacts 

on the environment.  

 

4.6. Biological Quality Models 

 

 Overall model performance of biological data lagged behind sediment and water 

quality models, perhaps because of the greater complexity, mobility, and variability in 

biota. Additionally, landcover data representing urbanization were less prominent in these 

models. While impervious cover and high intensity development were negatively 

correlated with nekton abundance and MAMBI values, other measures of human land use 

(e.g., agriculture, low intensity development) were positively associated with nekton and 

benthic species richness (Tables 23 and 24). Earlier studies have demonstrated a 

connection between urban watersheds and degraded biological communities, particularly 

in tidal creek headwaters (Holland et al., 2004; Parker, 2018). Thus, the positive 

correlation between low intensity development and biodiversity observed in these models 

was unexpected. One explanation could be that high-intensity and low-intensity types of 

development are mutually exclusive as watersheds characterized by low-intensity 

development may be less likely to be heavily urbanized. 

 The inconsistent role of landcover within this project’s biodiversity models could 

also be explained by how biological communities were defined and analyzed. Both 

Holland and others (2004) and Parker (2018) targeted a particular component of the 

biological community to test their hypotheses. For example, Holland and others (2004) 

only found a significant nekton response to development when looking at Penaeoid 
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species, and Parker (2018) studied abundances of pollution indicative benthic 

invertebrates in response to coastal development. By studying nekton and benthic 

communities as a whole, this project’s approach to biodiversity may have been too 

general to identify specific changes within community structure. It’s also possible that 

effects of landcover on biodiversity were too subtle to detect at the 12-digit HUC 

watershed scale; however, model performance also decreased when these data were 

modelled with buffers. There was a gap in this project’s spatial analysis between the 

largest 3 km buffers (2,827 ha) and smallest 14-digit HUC watersheds (8,937 ha). Future 

studies may find better connections between landcover and biodiversity by looking at 

smaller, more localized watersheds between this range. 

 Several weather and climate variables were also significant predictors in 

biological quality models. While water quality was most impacted by recent weather 

patterns and sediment quality by seasonal weather patterns, biological models responded 

best to 30- to 90-day temperature and precipitation patterns. Benthic biodiversity was 

positively correlated with 45-day precipitation totals and negatively correlated with 90-

day temperature averages. Hot and dry summers may result in stressed benthic 

communities and lowered biodiversity. However, drought conditions have been shown to 

increase benthic invertebrate diversity in some estuaries by increasing salinities (Palmer 

and Montagna, 2015).  

 Annual average temperature of both the study year and preceding year were 

significant predictors of nekton species richness. While nekton species richness in open 

water sites was negatively correlated with annual temperature from the current year, 

species richness in tidal creeks were negatively correlated with temperature averages 
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from the previous year. This relationship between temperature and biodiversity is worth 

investigating further as climate change will result in warmer air and water temperatures. 

Higher water temperatures may increase the likelihood and severity of hypoxic 

conditions which pose a threat to estuarine biological communities (Altieri and Gedan, 

2015). There may also be ecological significance in the timing of annual temperature 

increases within these models. Species richness in tidal creeks responded to annual 

temperature from the preceding year which could support the importance of tidal creeks 

as nursery habitats. Climate-driven hypoxia in estuaries has been shown to negatively 

impact survival of fish in early life stages (Nicholson et al., 2008). Thus, higher 

temperatures during the previous year may cause reduced nekton recruitment in tidal 

creeks and result in lower species richness in the following year’s trawls. 

 Climate teleconnection indices only appeared as a predictor of nekton abundance 

and tidal creek nekton species; the North Atlantic Oscillation (NAO), which has been 

shown to impact fisheries, was positively correlated with both of these measures. An 

inverse relationship between NAO and abundance of cod and haddock has been observed 

in the eastern North Atlantic (Fromentin and Planque, 1996; Solow, 2002). Interestingly, 

the opposite effect was observed in these models where positive NAO values were 

correlated with greater nekton abundance. NAO in the positive phase is associated with 

warmer and wetter winters in the Southeast (Appendix D). These milder winters have 

been correlated with higher levels of shrimp abundance in South Carolina’s ACE Basin; 

however, winter weather data were included in the modeling process and were not 

identified as significant predictors in these nekton models (DeLancey et al., 2008).  
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4.7. Predictive Modeling 

 

 The purpose of predictive modeling was to use linear regression formulas 

produced in this project to envision a future of coastal South Carolina’s estuarine 

environment shaped by climate change and population growth. Predictive models can be 

used to answer questions regarding the impacts of increased development and changing 

weather patterns on local water quality and explore potential interactions among these 

variable sets.  

 In most of the defined scenarios, bacteria levels were predicted to be significantly 

higher than the current baseline. Enterococci, but not fecal coliform, levels were not 

predicted to rise significantly under population growth scenarios (Figure 53). Conversely, 

predictions of fecal coliform were significantly higher under warmer and wetter 

predictions, but enterococci levels did not respond to climate change scenarios (Figure 

54). These two bacteria, while both important indicators of water quality, have different 

public health roles. Concentrations of Enterococcus bacteria are used to issue swim 

advisories in coastal areas, whereas high levels of fecal coliform are responsible for 

closing shellfish grounds. Presence of either bacteria can negatively affect the quality of 

life for coastal residents. Regardless of increased development, fecal coliform levels were 

predicted to increase due to climate change which could mean more frequent shellfish 

harvest closures. Alternatively, enterococci concentrations remained stable in response to 

increases in precipitation and temperature but were more sensitive to changes in 

landcover. Thus, a growing population may be met with more frequent coastal swim 

advisories.  
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 Increases in sediment contamination may not have as visible of an impact for 

coastal residents as shellfish harvest advisories or beach closures; however, contaminants 

modelled in this project have potential human health impacts. Many PAHs, for example, 

are known carcinogens and pose significant health risks (ATSDR, 1995). Sanders (1995) 

sampled oyster tissue from estuaries in Murrells Inlet, SC and found significantly higher 

levels of PAHs in tissues from oysters in urbanized versus forested watersheds. These 

contaminants are not only confined to sediments at the bottom of estuaries, rather they 

are present within the biological community and pose human health risks. 

 All sediment quality models contained variables linked to watershed 

development. With the exception of the DDT model, changes in population alone were 

enough to significantly increase the concentration of contaminants above baseline values 

(Figures 55-59). As a growing population leads to more urbanized watersheds, more 

contaminants are expected to make their way into the region’s estuarine systems. 

However, sediment contamination predictions varied when population growth was 

combined with temperature and precipitation changes.  

 Both temperature and precipitation were included in sediment quality predictive 

models. As coastal South Carolina transitions into a warmer and wetter climate, these 

models can help predict potential changes to sediment quality. Excess runoff from 

increased precipitation may lead to higher concentrations of contaminants; however, 

precipitation increases alone were insufficient to raise sediment contaminants above 

baseline values. The NCA predicts the most substantial increases in precipitation will 

occur during winter months in the Southeast (Easterling et al., 2017). Interestingly, winter 

precipitation was the most significant weather variable for many of these sediment 
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quality models. Changes in precipitation totals in climate change scenarios were evenly 

distributed across seasons. Perhaps if these scenarios were season-specific, more 

significant changes to sediment contamination would have been predicted.  

 Measures of temperature were negatively correlated with most sediment 

contaminant concentrations. As temperature increased in the change scenarios, 

predictions of PAHs and PCBs were significantly lower than baseline values. Since 

runoff is the likely mechanism by which these contaminants enter estuaries, the effect of 

temperature is somewhat difficult to interpret. Temperature and precipitation are 

interconnected weather phenomena, and in the case of these models, it’s possible that 

cool winters tend to coincide with wet winters. However, the PAH model included an 

interaction effect between winter temperature and precipitation and still predicted lower 

values under temperature increases. While there may be many explanations, these results 

suggest warmer temperatures may buffer the effects of population and precipitation on 

increased sediment contamination.  

 Overall, models of biological quality had poorer predictive power than sediment 

quality and water quality models; therefore, predictions of biodiversity under change 

scenarios were more variable. Under many of these scenarios, benthic biodiversity was 

predicted to improve and nekton biodiversity was predicted to worsen (Figures 60-65). 

Increases in temperature resulted in the most changes to nekton abundance and species 

richness predictions; however, changes to precipitation and population were less 

significant. While changes to precipitation or population may not be significant on their 

own, they may still influence the outcomes of predictions when combined with increased 

temperatures.  
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 Many of the nekton species captured by SCECAP trawls are economically 

important fishery species such as blue crab and shrimp. While warmer winters have been 

correlated with increased shrimp abundance, overall increases in temperature appear to 

have a negative effect on nekton abundance in these predictions (DeLancey et al., 2008). 

Predictions of both open water and tidal creek species richness decreased under 

temperature change scenarios, but only changes in tidal creek richness were significantly 

lower than baseline (Figures 61 and 62). Tidal creeks have been described as “sentinel 

habitats” meaning that tidal creek ecosystems are the first to experience declines in 

habitat quality and may signal large-scale degradation of the estuarine environment 

(Sanger et al., 2015). This observed difference in species richness predictions between 

the two habitat types may support the sentinel habitat hypothesis. To explore this 

hypothesis further, average percent changes of different scenarios were calculated from 

all predictive model results (Tables 28-39). On average, predictions were 7.0% different 

than baseline in open water sites but only 4.9% different than baseline in tidal creek sites. 

This suggests environmental variables in open water sites are more susceptible to change 

than tidal creek sites. While this runs counter to the sentinel habitat hypothesis, it could 

be the result of open water sites having relatively undisturbed baselines. 

 Although predictions of benthic abundance were not significantly different than 

baseline values, benthic species richness and MAMBI demonstrated significant changes 

from baseline values. These predictive models included measures of low-intensity 

developed landcover that were positively correlated with benthic species richness and 

MAMBI. In these instances, scenarios with population growth resulted in improved 

benthic invertebrate communities. This finding contradicted the expectation that estuaries 
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will experience declining benthic health in response to watershed development. Low-

intensity development may be a positive predictor in benthic models because it represents 

the absence of high-intensity development. It’s also possible that watersheds with sparser 

and lower-intensity development are located in regions that exhibit more diverse benthic 

communities. Hot spot analyses revealed hot spots of both MAMBI and benthic species 

richness in Lowcountry watersheds where development is less dense than the Tri-County 

and Grand Strand areas (Figures 49 and 52). The positive correlation between low-

intensity development and benthic biodiversity could also be evidence for the 

intermediate disturbance hypothesis which claims biodiversity is at its highest when the 

ecosystem is subjected to recurring, low-level disturbances (Connell, 1978).  

 

4.8. Next Steps and Future Studies 

 

 This project successfully used linear regression to explore relationships among a 

large suite of independent and dependent variables relating climate, land use, and 

environmental quality. Linear regression also provided statistically vetted formulas to 

make predictions of environmental responses under different population growth and 

climate change scenarios. However, linear regression modeling may have its 

shortcomings in explaining more complex relationships among the data. Early on in the 

modeling process, Generalized Additive Models (GAMs) were explored as an alternative 

to standard linear modeling. GAMs are a versatile tool that use smoothing terms to 

establish non-linear relationships between response and explanatory variables. GAMs 

were ultimately thrown out in favor of multiple linear regression formulas because they 
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produced marginally higher R2 values at the expense of models that were more difficult to 

interpret and apply. Now that this project has developed specific models and narrowed 

down the number of variables, GAMs could prove useful in exploring the structure of 

these relationships in greater detail or identifying thresholds in some of these 

relationships.  

 Another statistical tool considered during this project was Geographically 

Weighted Regression (GWR) which integrates linear regression and spatial data. 

Physiographic data were an essential part of this project, and GWR could be a powerful 

tool in developing more spatially explicit models. For example, GWR could better 

explain the effects of landcover on environmental data by creating watershed-specific 

regression formulas. This type of analysis could help remedy some of the unintended 

effects of spatial autocorrelation within the data. Further, GWR may also reveal which 

watersheds are more vulnerable to changes in landcover and which are more resilient.  

 Time series analysis and linear regression models revealed interesting patterns in 

both benthic and nekton biodiversity. For the sake of simplicity, this project had only 

analyzed biodiversity at the coarsest resolution – abundance and species richness. Future 

studies could look into these biological communities with greater detail by focusing on 

specific taxa such as pollution indicative benthic invertebrates or commercially important 

fishery species. The complexity of estuarine ecosystems over such a large study area 

presented many challenges in measuring biodiversity. Future studies could learn a lot by 

exploring the structure of these diverse biological communities and their responses to 

environmental change. 
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 This project reaffirmed the value of long-term environmental monitoring while 

demonstrating the efficacy of data synthesis methodology. This data-rich world presents 

many more opportunities to explore other long-term environmental datasets. At the start 

of this study, environmental datasets other than SCECAP (e.g., EPA’s STORET 

database) were considered for this project. Future studies could easily build upon this 

project by incorporating other environmental datasets into it the steps and procedures that 

have been outlined. These additional datasets may include more response variables (e.g., 

nutrients) as well as cover gaps in seasonal coverage as SCECAP data were only 

collected during the summer.  
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CHAPTER 5. CONCLUSION 

 

 Regional shifts in land use and landcover have altered the physical characteristics 

of South Carolina’s coastal watersheds. These watersheds represent an important link 

between upland habitats and downstream estuarine ecosystems. As a growing population 

continues to put pressure on coastal ecosystems, understanding this watershed connection 

will become ever more pertinent. It is also worthwhile to evaluate the estuarine 

environmental response to physical changes in the watershed within the context of a 

changing climate. Coastal South Carolina’s climate is becoming warmer and wetter. 

Higher temperatures may put added stress on biological communities while increases in 

heavy precipitation events could exacerbate the impacts of stormwater runoff. The 

compounded effects of urbanization and climate change present an uncertain future for 

South Carolina’s important estuarine ecosystems. Results from this project provide 

insight into some of these concerns and represent first steps towards addressing these 

challenges. 

 Bacteria concentration and sediment contaminant models showed negative 

correlations between urbanization and environmental quality. Overall, urbanized 

watersheds had more indications of impaired environmental quality than undeveloped 

watersheds, and this was seen across the region’s estuaries. Although the effects of 

changing landcover on biological quality were more subtle in linear models, this project’s 
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time series analyses documented an alarming trend of declining biodiversity in both 

nekton and benthic communities. In addition to landcover, variables of weather and 

climate figured prominently into this project’s models. In sediment and water quality 

models, measures of precipitation were positively correlated with levels of contamination 

implicating runoff as the primary mechanism by which surface contaminants enter the 

estuarine environment. Timing of precipitation also appeared to be an important factor. 

While bacteria levels were most influenced by 2-day precipitation totals, measures of 

sediment contamination were more influenced by seasonal precipitation patterns. 

Interestingly, winter precipitation proved to be an important predictor in most sediment 

quality models which raised many questions for future research. The influence of 

temperature was more variable across different models; however, in most biological 

quality models, temperature was negatively correlated with measures of benthic and 

nekton biodiversity.  

 These past relationships were then extrapolated into future scenarios defined by 

population growth and climate change. Based on these models, increases in population 

will be met with higher levels of sediment contamination and fecal coliform bacteria in 

coastal South Carolina’s estuaries. These models were also used to predict the potential 

effects of climate change on the estuarine environment. Increases in precipitation resulted 

in predictions of bacterial and sediment contamination only slightly above baseline 

conditions. However, the effects of increased temperature were more noticeable and 

resulted in predictions of nekton and benthic biodiversity significantly lower than 

baseline conditions.  
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 Whether observing trends in historic data or forecasting future responses, this 

project provides examples of how a changing landscape and climate can negatively 

impact the estuarine environment of South Carolina. The purpose of this project was not 

to add another voice to a growing chorus of environmental alarmism, but rather to inform 

potential policies and solutions that protect and preserve South Carolina’s coastal 

ecosystems. A guiding principle of sustainable development is finding a balance between 

economic growth and environmental health. As increasing stormwater runoff has the 

potential to further degrade South Carolina’s important estuarine systems, effective and 

ecologically informed stormwater management is critical in finding this balance.  

 The prevailing method of stormwater management in coastal South Carolina is 

the stormwater retention pond. Stormwater ponds are designed to intercept and store 

excess water and are a common feature of coastal South Carolina’s urban and suburban 

landscape. As ubiquitous as stormwater ponds may be, questions have been raised about 

their efficacy, maintenance costs, lifespan, and ecology (Beckingham et al., 2019; Cotti-

Rausch et al., 2018). Fortunately, there are alternatives. Low Impact Development (LID) 

is a relatively new approach to stormwater management that prioritizes ecological design 

and function (Dietz, 2007). 

 Ellis and others (2014) created a LID planning and design guide tailored for 

coastal South Carolina. This guide offers a full suite of LID design ideas including 

bioretention (e.g., bioswales and constructed wetlands), permeable pavement, green 

roofs, and rainwater harvesting. LID stormwater designs offer many environmental and 

economic benefits (Dietz, 2007, US EPA 2007). If adopted at the watershed scale, LID 

could help mitigate the negative impacts of stormwater runoff on South Carolina’s 
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estuarine systems. Solutions to stormwater runoff occur at the local level; however, 

addressing climate change will require global reductions in carbon emissions. While LID 

stormwater management may not mitigate climate change, the widespread adoption of 

green infrastructure is a climate adaptation that can help create a resilient South Carolina 

coast.  
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Figure 1.  Map of weather stations of South Carolina’s coast   
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Figure 2.  Map of coastal South Carolina’s counties and climate divisions. Climate 
divisions (4 and 7) defined by NOAA National Climate Data Center (NOAA NCDC).  
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Figure 3.  Map of SCECAP stations (1999-2018) 
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Figure 4.  Map of 8, 10, 12, and 14-digit HUC watersheds along South Carolina’s coast 
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Figure 5.  Examples of nested fishnet grid cells over coastal South Carolina   
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Figure 6.  Examples of 1, 2, and 3 km buffers for spatial analysis. Center points 
of buffers are SCECAP stations.  
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Figure 7.  Hectares of coastal South Carolina counties that experienced changes in 
landcover between 2001 and 2016. Supplementary data from landcover change analysis 
available in Appendices H and I. 



 101 

 
  

 
Figure 8.  Hectares of landcover classes lost and gained in coastal South Carolina 
between 2001 and 2016. Numbers within bars represent net change in hectares for that 
category. Supplementary data from landcover change analysis available in Appendices H 
and I. 
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Figure 9.  Hectares of landcover classes lost and gained in coastal South Carolina counties 
between 2001 and 2016. Supplementary data from landcover change analysis available in 
Appendices H and I. 
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Figure 10.  Observed annual climate from 1999 to 2018 in coastal South Carolina 
compared to 30-year climate normals. It should be noted that 2015 was an anomaly for 
South Carolina as most of the year was in a drought leading up to historic rainfall totals 
caused by Hurricane Joaquin from October 1-5 (Mizzell et al., 2016).  
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Figure 11.  Observed seasonal climate from 1999 to 2018 in coastal South Carolina 
compared to 30-year climate normals. Seasons broken down as follows: Winter (Dec., 
Jan., Feb.), Spring (Mar., Apr., May), Summer (Jun., Jul., Aug.), and Fall (Sep., Oct., 
Nov.).  
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Figure 12.  Comparisons of SCECAP water quality data by habitat type. Asterisks signify 
p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). For supplemental results, see Table 3. 
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Figure 13.  Comparisons of SCECAP sediment quality data by habitat type. Asterisks 
signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). For supplemental results, see 
Table 3. 
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Figure 14.  Comparisons of SCECAP biological quality data by habitat type. Asterisks 
signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). For supplemental results, see 
Table 3. 
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Figure 15.  Comparisons of SCECAP water quality data by time period (all sites). 
Asterisks signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). For supplemental 
results, see Table 4. 
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Figure 16. Comparisons of SCECAP water quality data by time period (open water vs. tidal 
creek sites). Asterisks signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). For 
supplemental results, see Tables 5 and 6. 
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Figure 17.  Comparisons of SCECAP sediment quality data by time period (all sites). 
Asterisks signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). For supplemental 
results, see Table 4. 
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Figure 18.  Comparisons of SCECAP sediment quality data by time period (open water 
vs. tidal creek sites). Asterisks signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). 
For supplemental results, see Table 5 and 6. 
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Figure 19.  Comparisons of SCECAP biological quality data by time period (all sites). 
Asterisks signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). For supplemental 
results, see Table 4. 
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Figure 20.  Comparisons of SCECAP biological quality data by time period (open water 
vs. tidal creek sites). Asterisks signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). 
For supplemental results, see Table 5 and 6. 
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Figure 21.  Comparisons of SCECAP water quality data by watershed development (all 
sites). Asterisks signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). For 
supplemental results, see Table 7. 
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Figure 22.  Comparisons of SCECAP water quality data by watershed development (open 
water vs. tidal creek sites). Asterisks signify p-values from t-tests (***p≤0.01, **p≤0.05, 
*p≤0.10). For supplemental results, see Table 8 and 9. 
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Figure 23.  Comparisons of SCECAP sediment quality data by watershed development 
(all sites). Asterisks signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). For 
supplemental results, see Table 7.  
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Figure 24.  Comparisons of SCECAP sediment quality data by watershed development 
(open water vs. tidal creek sites). Asterisks signify p-values from t-tests (***p≤0.01, 
**p≤0.05, *p≤0.10). For supplemental results, see Table 8 and 9.  
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Figure 25.  Comparisons of SCECAP biological quality data by watershed development 
(all sites). Asterisks signify p-values from t-tests (***p≤0.01, **p≤0.05, *p≤0.10). For 
supplemental results, see Table 7.  
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Figure 26.  Comparisons of SCECAP biological quality data by watershed development 
(open water vs. tidal creek sites). Asterisks signify p-values from t-tests (***p≤0.01, 
**p≤0.05, *p≤0.10). For supplemental results, see Table 8 and 9.  
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Figure 27.  Time series analysis of SCECAP water quality annual averages from 1999-
2018 (all sites). Dotted lines represent GLS regression trendlines not significantly 
different than zero (p-value>0.05). Gaps in line graph indicate missing data. For 
supplemental results, see Table 10.  
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Figure 28.  Time series analysis of SCECAP water quality annual averages from 
1999-2018 (open water vs. tidal creek sites). Dotted lines represent GLS regression 
trendlines not significantly different than zero (p-value>0.05). Gaps in line graph 
indicate missing data. For supplemental results, see Table 10. 
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Figure 29.  Time series analysis of SCECAP sediment quality annual averages from 
1999-2018 (all sites). Dotted lines represent GLS regression trendlines not significantly 
different than zero (p-value>0.05). Gaps in line graph indicate missing data. For 
supplemental results, see Tables 11 and 12. 
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Figure 30.  Time series analysis of SCECAP sediment quality annual 
averages from 1999-2018 (open water vs. tidal creek sites). Dotted 
lines represent GLS regression trendlines not significantly different 
than zero (p-value>0.05). Gaps in line graph indicate missing data. 
For supplemental results, see Tables 11 and 12. 
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Figure 31.  Time series analysis of SCECAP biological quality annual averages from 
1999-2018 (all sites). Solid lines represent GLS regression trendlines with slopes 
significantly different from zero (p-value≤0.05); dotted lines not statistically significant 
(p-value>0.05). For supplemental results, see Table 13. 
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Figure 32.  Time series analysis of SCECAP biological quality annual averages from 
1999-2018 (open water vs. tidal creek sites). Solid lines represent GLS regression 
trendlines with slopes significantly different from zero (p-value≤0.05); dotted lines 
not statistically significant (p-value>0.05). For supplemental results, see Table 13. 
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Figure 33.  Time series analysis of annual climate in coastal South Carolina from 1999-
2018 (average of 3 primary weather stations). Solid lines represent GLS regression 
trendlines with slopes significantly different from zero (p-value≤0.05); dotted lines not 
statistically significant (p-value>0.05). For supplemental results, see Tables 14 and 15. 
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Figure 34.  Time series analysis of annual climate in coastal South Carolina from 1999-
2018 (by 3 primary weather stations). Solid lines represent GLS regression trendlines with 
slopes significantly different from zero (p-value≤0.05); dotted lines not statistically 
significant (p-value>0.05). Gaps in line graph indicate missing data. For supplemental 
results, see Tables 14 and 15. 
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Figure 35.  Time series analysis of seasonal temperature in coastal South Carolina from 
1999-2018 (average of 3 primary weather stations). Dotted lines represent GLS regression 
trendlines not significantly different than zero (p-value>0.05). For supplemental results, 
see Tables 14 and 15. 
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Figure 36.  Time series analysis of seasonal temperature in coastal South Carolina from 
1999-2018 (by 3 primary weather stations). Solid lines represent GLS regression 
trendlines with slopes significantly different from zero (p-value≤0.05); dotted lines not 
statistically significant (p-value>0.05). Gaps in line graph indicate missing data. For 
supplemental results, see Tables 14 and 15. 
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Figure 37.  Time series analysis of seasonal precipitation in coastal South Carolina from 
1999-2018 (average of 3 primary weather stations). Dotted lines represent GLS regression 
trendlines not significantly different than zero (p-value>0.05). For supplemental results, 
see Tables 14 and 15. 
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Figure 38.  Time series analysis of seasonal precipitation in coastal South Carolina from 
1999-2018 (by 3 primary weather stations). Solid lines represent GLS regression 
trendlines with slopes significantly different from zero (p-value≤0.05); dotted lines not 
statistically significant (p-value>0.05). Gaps in line graph indicate missing data. For 
supplemental results, see Tables 14 and 15. 
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Figure 39.  Time series analysis of extreme weather occurrences in coastal South Carolina 
from 1999-2018 (average of 3 primary weather stations). Solid lines represent GLS 
regression trendlines with slopes significantly different from zero (p-value≤0.05); dotted 
lines not statistically significant (p-value>0.05). For supplemental results, see Tables 14 
and 15. 
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Figure 40.  Time series analysis of extreme weather occurrences in coastal South Carolina 
from 1999-2018 (by 3 primary weather stations). Solid lines represent GLS regression 
trendlines with slopes significantly different from zero (p-value≤0.05); dotted lines not 
statistically significant (p-value>0.05). Gaps in line graph indicate missing data. For 
supplemental results, see Tables 14 and 15. 
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Figure 41.  Map of fecal coliform hot spots in coastal South Carolina by 14-
digit HUC watershed 
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Figure 42.  Map of metal (ERMQ) sediment contamination hot spots in 
coastal South Carolina by 14-digit HUC watershed 
 

Metals (ERMQ) Hot Spot Analysis 
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Figure 43.  Map of PAH (ERMQ) sediment contamination hot spots in coastal 
South Carolina by 14-digit HUC watershed 
 

PAHs (ERMQ) Hot Spot Analysis 
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PCBs (ERMQ) Hot Spot Analysis 

 
Figure 44.  Map of PCB (ERMQ) sediment contamination hot spots in coastal 
South Carolina by 14-digit HUC watershed 
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Figure 45.  Map of DDT (ERMQ) sediment contamination hot spots in coastal 
South Carolina by 14-digit HUC watershed 
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Figure 46.  Map of total ERMQ sediment contamination hot spots in coastal 
South Carolina by 14-digit HUC watershed 
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Figure 47.  Map of trawl species richness hot spots in coastal South Carolina 
by 14-digit HUC watershed 
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Figure 48.  Map of trawl abundance hot spots in coastal South Carolina by 14-
digit HUC watershed 
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Figure 49.  Map of benthic species richness hot spots in coastal South 
Carolina by 14-digit HUC watershed 
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Figure 50.  Map of benthic abundance hot spots in coastal South Carolina by 
14-digit HUC watershed   
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Figure 51.  Map of BIBI hot spots in coastal South Carolina by 14-digit HUC 
watershed 
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Figure 52.  Map of MAMBI hot spots in coastal South Carolina by 14-digit 
HUC watershed 
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Figure 53.  Predicted enterococci levels in South Carolina’s estuaries under 14 climate 
and population change scenarios. Error bars represent 95th percentile upper and lower 
confidence intervals. Baseline conditions represented by solid horizontal line (dotted 
horizontal lines indicate baseline upper and lower 95th confidence intervals). These data 
represent all SCECAP habitats (open water and tidal creek). For supplementary results, 
see Table 27.  
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Figure 54.  Predicted fecal coliform levels in South Carolina’s estuaries under 14 climate 
and population change scenarios. Error bars represent 95th percentile upper and lower 
confidence intervals. Baseline conditions represented by solid horizontal line (dotted 
horizontal lines indicate baseline upper and lower 95th confidence intervals). These data 
represent all SCECAP habitats (open water and tidal creek). For supplementary results, 
see Table 28.  
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Figure 55.  Predicted ERMQs (all contaminants) in South Carolina’s estuarine sediments 
under 14 climate and population change scenarios. Error bars represent 95th percentile 
upper and lower confidence intervals. Baseline conditions represented by solid horizontal 
line (dotted horizontal lines indicate baseline upper and lower 95th confidence intervals). 
These data represent all SCECAP habitats (open water and tidal creek). For 
supplementary results, see Table 29.  
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Figure 56.  Predicted ERMQs (DDT) in South Carolina’s estuarine sediments under 14 
climate and population change scenarios. Error bars represent 95th percentile upper and 
lower confidence intervals. Baseline conditions represented by solid horizontal line 
(dotted horizontal lines indicate baseline upper and lower 95th confidence intervals). 
These data represent all SCECAP habitats (open water and tidal creek). For 
supplementary results, see Table 30.  
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Figure 57.  Predicted ERMQs (metals) in South Carolina’s estuarine sediments under 14 
climate and population change scenarios. Error bars represent 95th percentile upper and 
lower confidence intervals. Baseline conditions represented by solid horizontal line 
(dotted horizontal lines indicate baseline upper and lower 95th confidence intervals). 
These data represent all SCECAP habitats (open water and tidal creek). For 
supplementary results, see Table 31.  
 



 151 

 
  

 
Figure 58.  Predicted ERMQs (PAHs) in South Carolina’s estuarine sediments under 14 
climate and population change scenarios. Error bars represent 95th percentile upper and 
lower confidence intervals. Baseline conditions represented by solid horizontal line (dotted 
horizontal lines indicate baseline upper and lower 95th confidence intervals). These data 
represent all SCECAP habitats (open water and tidal creek). For supplementary results, see 
Table 32.  
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Figure 59.  Predicted ERMQs (PCBs) in South Carolina’s estuarine sediments under 14 
climate and population change scenarios. Error bars represent 95th percentile upper and 
lower confidence intervals. Baseline conditions represented by solid horizontal line 
(dotted horizontal lines indicate baseline upper and lower 95th confidence intervals). These 
data represent all SCECAP habitats (open water and tidal creek). For supplementary 
results, see Table 33.  
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Figure 60.  Predicted nekton abundance per area in South Carolina’s estuaries under 14 
climate and population change scenarios. Error bars represent 95th percentile upper and 
lower confidence intervals. Baseline conditions represented by solid horizontal line 
(dotted horizontal lines indicate baseline upper and lower 95th confidence intervals). These 
data represent all SCECAP habitats (open water and tidal creek). For supplementary 
results, see Table 34.  
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Figure 61.  Predicted nekton species richness in South Carolina’s open water estuarine 
habitats under 14 climate and population change scenario. Error bars represent 95th 
percentile upper and lower confidence intervals. Baseline conditions represented by solid 
horizontal line (dotted horizontal lines indicate baseline upper and lower confidence 
intervals). For supplemental results, see Table 35.  
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Figure 62.  Predicted nekton species richness in South Carolina’s tidal creek estuarine 
habitats under 14 climate and population change scenario. Error bars represent 95th 
percentile upper and lower confidence intervals. Baseline conditions represented by solid 
horizontal line (dotted horizontal lines indicate baseline upper and lower confidence 
intervals). For supplemental results, see Table 35.  
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Figure 63.  Predicted benthic abundance per area in South Carolina’s estuaries under 14 
climate and population change scenario. Error bars represent 95th percentile upper and 
lower confidence intervals. Baseline conditions represented by solid horizontal line 
(dotted horizontal lines indicate baseline upper and lower 95th confidence intervals). These 
data represent all SCECAP habitats (open water and tidal creek). For supplementary 
results, see Table 36. 
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Figure 64.  Predicted benthic species richness in South Carolina’s estuaries under 14 
climate and population change scenario. Error bars represent 95th percentile upper and 
lower confidence intervals. Baseline conditions represented by solid horizontal line 
(dotted horizontal lines indicate baseline upper and lower 95th confidence intervals). These 
data represent all SCECAP habitats (open water and tidal creek). For supplementary 
results, see Table 37. 
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Figure 65.  Predicted MAMBI values in South Carolina’s estuaries under 14 climate and 
population change scenario. Error bars represent 95th percentile upper and lower 
confidence intervals. Baseline conditions represented by solid horizontal line (dotted 
horizontal lines indicate baseline upper and lower 95th confidence intervals). These data 
represent all SCECAP habitats (open water and tidal creek). For supplementary results, 
see Table 38. 
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Figure 66.  Change in landcover in coastal South Carolina counties from 2001 to 2016 
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Figure 67.  Sankey diagram showing transitions in landcover types by hectare in coastal 
South Carolina from 2001 (left) to 2016 (right). Total area represented in Sankey diagram 
equals 72,148 ha – 4% of coastal South Carolina’s total area (1,844,407 ha). Figure created 
using ‘networkD3’ R package (https://CRAN.R-project.org/package=networkD3).  
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Figure 68.  Change in impervious cover in coastal South Carolina counties from 2001 to 
2016   
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Figure 69.  Change in population density in coastal South Carolina counties from 2000 to 
2018 
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Figure 70.  Watershed summary sheet for a 14-digit HUC in Charleston 
County, SC 
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Figure 71.  Observed monthly drought index values during 1999-2018 study period by 
coastal South Carolina climate divisions  
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Figure 72.  Observed monthly standard precipitation index values during 1999-2018 study 
period by coastal South Carolina climate divisions 
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Figure 73.  Observed monthly climate teleconnection index values during 1999-2018 study 
period  
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Table 1.  NLCD landcover data summarized for the state of South Carolina and its coastal 
counties. Percent state area represents the proportion of area each landcover class contributes to 
the total area of South Carolina. Percent coastal area represents the proportion of area each 
landcover class contributes to the total area of South Carolina’s eight coastal counties (Figure 
2).  
 
Original NLCD Landcover 
Class 
Percent coastal area 
(percent state area) 

Condensed Landcover 
Subcategory 
Percent coastal area 
(percent state area) 

Condensed Landcover 
Category 
Percent coastal area 
(percent state area) 

Open Water 
5.54 (3.18) 

Water 
5.54 (3.18) 

Water 
5.54 (3.18) 

Emergent Herbaceous Wetlands 
10.12 (2.65) 

Marsh 
10.12 (2.65) 

Marsh 
10.12 (2.65) 

Deciduous Forest 
1.34 (9.15) 

Forested Upland 
32.03 (47.32) 

Forest 
66.36 (67.36) 

Evergreen Forest 
26.34 (24.67) 

  

Mixed Forest 
0.71 (5.97) 

  

Shrub and Scrub 
1.89 (3.40) 

  

Herbaceous 
1.75 (4.13) 

  

Woody Wetlands 
34.33 (20.04) 

Forested Wetland 
34.33 (20.04) 

 

Barren Land 
0.32 (0.23) 

Agriculture 
7.84 (16.40) 

Agriculture 
7.84 (16.40) 

Hay and Pasture 
1.64 (6.81) 

  

Cultivated Crops 
5.88 (9.36) 

  

Developed, Open 
5.54 (3.18) 

Low Intensity Development 
8.33 (5.97) 

Development 
10.14 (10.42) 

Developed, Low Intensity 
2.79 (2.79) 

  

Developed, Medium Intensity 
1.08 (0.95) 

High Intensity Development 
1.41 (1.30) 

 

Developed, High Intensity 
0.33 (0.35) 

  

Notes: Data from 2016 NLCD (Yang et al., 2018). 
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Table 2.  Climate normals and extreme weather summary data for three weather stations 
representing coastal South Carolina 
 

Variable Season 
Brookgreen 

Gardens 
Charleston 

Int’l Airport 
Savannah 

Int’l Airport 
Average 
of All 3 

 
Temperature (°C) 

     

 Annual 18.85 18.85 19.30 19.00 
 Winter 10.00 10.15 10.75 10.30 
 Spring 18.40 18.50 19.00 18.63 
 Summer 27.30 27.10 27.50 27.30 
 Fall 19.80 19.55 20.00 19.78 
Precipitation (cm)      
 Annual 137.62 129.62 121.82 129.69 
 Winter 29.29 24.84 23.95 24.49 
 Spring 27.38 24.49 24.84 25.57 
 Summer 43.54 49.10 46.00 46.21 
 Fall 37.41 31.19 27.03 31.88 
Extreme Temperature (°C)      
  33.3 34.3 35.0 34.4 
Extreme Precipitation (cm)      
  2.34 2.26 2.11 2.24 

 
Notes: Temperature and precipitation from 30-year (1980-2010) climate normals (NOAA NCEI). 
Seasons broken down as follows: Winter (Dec., Jan., Feb.), Spring (Mar., Apr., May), Summer (Jun., 
Jul., Aug.), and Fall (Sep., Oct., Nov.). Extreme weather data represent the 95th percentiles of daily 
temperature maximums and 24-hour precipitation totals from project’s 1999-2018 weather dataset.  

 
 
  



 170 

Table 3.  t-test results comparing SCECAP environmental data by habitat type. Values indicate 
averages.  
 

Parameter Open Water 
(n=408) 

Tidal Creek 
(n=403) p-value 

 
Water Quality    

Water Temperature (°C) 29.49 29.83 <0.001 
Dissolved Oxygen (mg/L) 5.14 4.41 <0.001 
Salinity (ppt) 27.51 28.45 0.112 
pH 7.60 7.42 <0.001 
Fecal Coliform (log MPN 100/mL) 0.64 0.98 <0.001 
Enterococcus spp. (log MPN/100mL) 0.66 0.94 <0.001 
 
Sediment Quality    

Metals (ug/g) 63.44 78.32 0.001 
Metals (ERMQ) 0.0348 0.0428 <0.001 
PAHs (ng/g) 84.94 56.52 0.218 
PAHs (ERMQ) 0.0037 0.0028 0.308 
PCBs (ng/g) 0.61 0.64 0.719 
PCBs (ERMQ) 0.0034 0.0036 0.719 
DDT (ng/g) 0.08 0.19 0.001 
DDT (ERMQ) 0.0018 0.0041 0.001 
PBDEs (ng/g) 0.05 0.04 0.399 
All Contaminants (ERMQ) 0.0141 0.0162 0.044 
 
Biological Quality    

Nekton Species Richness  10.17 11.52 0.002 
Nekton Abundance (abundance/m2) 0.03 0.08 <0.001 
Benthic Species Richness 29.17 24.88 0.001 
Benthic Abundance (abundance/m2) 4500.76 3429.29 0.001 
BIBI 3.63 3.33 <0.001 
MAMBI 0.47 0.42 <0.001 
Notes: Rows in bold represent t-test results with p-values≤0.05. 
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Table 4.  t-test results comparing SCECAP environmental data by time period (all sites). 
Values indicate averages. 
 

Parameter 1999 to 2008 
(n=511) 

2009 to 2018 
(n=300) p-value 

 
Water Quality    

Water Temperature (°C) 29.54 29.86 0.001 
Dissolved Oxygen (mg/L) 4.78 4.76 0.789 
Salinity (ppt) 28.14 27.71 0.474 
pH 7.53 7.49 0.036 
Fecal Coliform (log MPN 100/mL) 0.83 0.78 0.388 
Enterococcus spp. (log MPN/100mL) 0.52 0.84 0.013 
 
Sediment Quality    

Metals (ug/g) 73.48 66.33 0.081 
Metals (ERMQ) 0.0401 0.0366 0.096 
PAHs (ng/g) 68.49 74.74 0.802 
PAHs (ERMQ) 0.0030 0.0036 0.526 
PCBs (ng/g) 0.61 0.65 0.637 
PCBs (ERMQ) 0.0034 0.0036 0.638 
DDT (ng/g) 0.10 0.20 0.005 
DDT (ERMQ) 0.0021 0.0044 0.005 
PBDEs (ng/g) 0.01 0.07 <0.001 
All Contaminants (ERMQ) 0.0153 0.0149 0.764 
 
Biological Quality    

Nekton Species Richness 11.78 9.23 <0.001 
Nekton Abundance (abundance/m2) 0.06 0.03 <0.001 
Benthic Species Richness 29.00 23.68 <0.001 
Benthic Abundance (abundance/m2) 4266.19 3459.71 0.024 
BIBI 3.53 3.40 0.044 
MAMBI 0.45 0.42 0.034 
Notes: Rows in bold represent t-test results with p-values≤0.05. 
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Table 5.  t-test results comparing SCECAP environmental data by time period (open water 
sites). Values indicate averages. 
 

Parameter 1999 to 2008 
(n=259) 

2009 to 2018 
(n=149) p-value 

 
Water Quality    

Water Temperature (°C) 29.41 29.63 0.136 
Dissolved Oxygen (mg/L) 5.13 5.17 0.649 
Salinity (ppt) 27.74 27.11 0.449 
pH 7.62 7.57 0.072 
Fecal Coliform (log MPN 100/mL) 0.67 0.60 0.374 
Enterococcus spp. (log MPN/100mL) 0.59 0.67 0.625 
 
Sediment Quality    

Metals (ug/g) 65.32 60.15 0.395 
Metals (ERMQ) 0.0359 0.0329 0.305 
PAHs (ng/g) 93.88 69.29 0.520 
PAHs (ERMQ) 0.0039 0.0033 0.693 
PCBs (ng/g) 0.58 0.66 0.489 
PCBs (ERMQ) 0.0032 0.0037 0.489 
DDT (ng/g) 0.05 0.14 0.006 
DDT (ERMQ) 0.0012 0.0030 0.006 
PBDEs (ng/g) 0.02 0.08 0.003 
All Contaminants (ERMQ) 0.0143 0.0136 0.678 
 
Biological Quality    

Nekton Species Richness 11.16 8.47 <0.001 
Nekton Abundance (abundance/m2) 0.037 0.021 0.001 
Benthic Species Richness 31.55 25.01 0.001 
Benthic Abundance (abundance/m2) 4971.81 3679.60 0.024 
BIBI 3.69 3.52 0.065 
MAMBI 0.43 0.39 0.010 
Notes: Rows in bold represent t-test results with p-values≤0.05. 
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Table 6.  t-test results comparing SCECAP environmental data by time period (tidal creek 
sites). Values indicate averages. 
 

Parameter 1999 to 2008 
(n=252) 

2009 to 2018 
(n=151) p-value 

 
Water Quality    

Water Temperature (°C) 29.68 30.08 0.001 
Dissolved Oxygen (mg/L) 4.43 4.38 0.642 
Salinity (ppt) 28.55 28.29 0.771 
pH 7.44 7.40 0.256 
Fecal Coliform (log MPN 100/mL) 0.99 0.96 0.644 
Enterococcus spp. (log MPN/100mL) 0.44 1.01 0.006 
 
Sediment Quality    

Metals (ug/g) 81.89 72.38 0.079 
Metals (ERMQ) 0.0444 0.0403 0.156 
PAHs (ng/g) 42.40 80.08 0.231 
PAHs (ERMQ) 0.0022 0.0039 0.157 
PCBs (ng/g) 0.64 0.64 0.983 
PCBs (ERMQ) 0.0036 0.0035 0.982 
DDT (ng/g) 0.14 0.27 0.071 
DDT (ERMQ) 0.0031 0.0058 0.071 
PBDEs (ng/g) 0.01 0.06 0.016 
All Contaminants (ERMQ) 0.0162 0.0162 0.997 
 
Biological Quality    

Nekton Species Richness 12.42 9.99 <0.001 
Nekton Abundance (abundance/m2) 0.09 0.05 0.001 
Benthic Species Richness 26.39 22.35 0.009 
Benthic Abundance (abundance/m2) 3540.88 3241.31 0.404 
BIBI 3.37 3.27 0.330 
MAMBI 0.43 0.39 0.010 
Notes: Rows in bold represent t-test results with p-values≤0.05. 
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Table 7.  t-test results comparing SCECAP environmental data by level of watershed 
development (all sites). Values indicate averages. 
 

Parameter Developed 
(n=49) 

Undeveloped 
(n=752) p-value 

 
Water Quality    

Water Temperature (°C) 29.25 29.68 0.013 
Dissolved Oxygen (mg/L) 5.14 4.75 0.004 
Salinity (ppt) 27.37 28.02 0.503 
pH 7.70 7.50 <0.001 
Fecal Coliform (log MPN 100/mL) 1.19 0.79 <0.001 
Enterococcus spp. (log MPN/100mL) 0.99 0.79 0.271 
 
Sediment Quality    

Metals (ug/g) 101.73 68.89 0.023 
Metals (ERMQ) 0.0531 0.0379 0.041 
PAHs (ng/g) 499.87 43.77 0.003 
PAHs (ERMQ) 0.0178 0.0023 0.003 
PCBs (ng/g) 1.60 0.56 0.008 
PCBs (ERMQ) 0.0089 0.0031 0.008 
DDT (ng/g) 0.35 0.12 0.044 
DDT (ERMQ) 0.0076 0.0027 0.045 
PBDEs (ng/g) 0.01 0.04 <0.001 
All Contaminants (ERMQ) 0.0318 0.0141 <0.001 
 
Biological Quality    

Nekton Species Richness 10.82 10.84 0.983 
Nekton Abundance (abundance/m2) 0.02 0.06 <0.001 
Benthic Species Richness 31.29 26.77 0.163 
Benthic Abundance (abundance/m2) 4145.41 3957.60 0.780 
BIBI 3.55 3.48 0.618 
MAMBI 0.44 0.44 0.941 
Notes: Rows in bold represent t-test results with p-values≤0.05. Developed sites defined as 14-digit 
HUC watersheds with >18.9% upland impervious cover.  
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Table 8.  t-test results comparing SCECAP environmental data by level of watershed 
development (open water sites). Values indicate averages. 
 

Parameter Developed 
(n=30) 

Undeveloped 
(n=378) p-value 

 
Water Quality    

Water Temperature (°C) 29.02 29.53 0.029 
Dissolved Oxygen (mg/L) 5.33 5.13 0.217 
Salinity (ppt) 26.83 27.57 0.471 
pH 7.75 7.59 <0.001 
Fecal Coliform (log MPN 100/mL) 1.26 0.59 <0.001 
Enterococcus spp. (log MPN/100mL) 0.97 0.63 0.184 
 
Sediment Quality    

Metals (ug/g) 109.06 59.94 0.024 
Metals (ERMQ) 0.0561 0.0332 0.038 
PAHs (ng/g) 668.93 40.14 0.011 
PAHs (ERMQ) 0.0238 0.0021 0.011 
PCBs (ng/g) 1.59 0.53 0.026 
PCBs (ERMQ) 0.0088 0.0030 0.026 
DDT (ng/g) 0.26 0.07 0.036 
DDT (ERMQ) 0.0056 0.0015 0.036 
PBDEs (ng/g) 0.01 0.05 0.010 
All Contaminants (ERMQ) 0.0368 0.0123 0.008 
 
Biological Quality    

Nekton Species Richness 11.36 10.07 0.319 
Nekton Abundance (abundance/m2) 0.02 0.03 <0.001 
Benthic Species Richness 32.23 28.92 0.412 
Benthic Abundance (abundance/m2) 4119.70 4531.16 0.647 
BIBI 3.70 3.62 0.669 
MAMBI 0.48 0.47 0.920 
Notes: Rows in bold represent t-test results with p-values≤0.05. Developed sites defined as 14-digit 
HUC watersheds with >18.9% upland impervious cover.  
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Table 9.  t-test results comparing SCECAP environmental data by level of watershed 
development (tidal creek sites). Values indicate averages. 
  

Parameter Developed 
(n=19) 

Undeveloped 
(n=384) p-value 

 
Water Quality    

Water Temperature (°C) 29.62 29.84 0.377 
Dissolved Oxygen (mg/L) 4.85 4.39 0.034 
Salinity (ppt) 28.23 28.46 0.903 
pH 7.62 7.42 0.005 
Fecal Coliform (log MPN 100/mL) 1.07 0.98 0.571 
Enterococcus spp. (log MPN/100mL) 1.04 0.93 0.698 
 
Sediment Quality    

Metals (ug/g) 90.55 77.71 0.446 
Metals (ERMQ) 0.0486 0.0426 0.508 
PAHs (ng/g) 241.84 47.35 0.027 
PAHs (ERMQ) 0.0086 0.0025 0.046 
PCBs (ng/g) 1.63 0.59 0.141 
PCBs (ERMQ) 0.0090 0.0033 0.141 
DDT (ng/g) 0.50 0.17 0.209 
DDT (ERMQ) 0.0108 0.0037 0.209 
PBDEs (ng/g) 0.01 0.04 0.065 
All Contaminants (ERMQ) 0.0242 0.0158 0.129 
 
Biological Quality    

Nekton Species Richness 9.88 11.60 0.208 
Nekton Abundance (abundance/m2) 0.03 0.08 <0.001 
Benthic Species Richness 29.79 24.64 0.357 
Benthic Abundance (abundance/m2) 4186.01 3391.55 0.460 
BIBI 3.32 3.33 0.951 
MAMBI 0.39 0.42 0.457 
Notes: Rows in bold represent t-test results with p-values≤0.05. Developed sites defined as 14-digit 
HUC watersheds with >18.9% upland impervious cover.  
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Table 10.  Generalized least squares time-series regression results: water quality (1999-2018). 
Values indicate µ ± SE with positive values indicating increasing trend over time.  
 
 Temperature 

(°C) 
DO 

(mg/L) 
Salinity 

(ppt) pH Fecal coliform 
(MPN/100mL)† 

Enterococci 
(MPN/100mL)† 

 
All Sites 

Year 0.007 
(±0.034) 

0.007 
(±0.011) 

-0.099 
(±0.149) 

-0.004 
(±0.003) 

-0.001 
(±0.006) 

0.014 
(±0.075) 

Intercept 16.415 
(±67.719) 

-8.714 
(±21.825) 

227.588 
(±300.060) 

15.670**

* 

(±5.174) 

2.727 
(±12.992) 

-26.922 
(±163.442) 

Observations 20 20 20 20 20 12 
Log 
Likelihood -19.480 -3.878 -52.939 16.647 3.646 -1.528 

AIC 46.960 15.757 113.877 -25.294 0.708 11.057 
BIC 50.522 19.318 117.439 -21.732 4.270 12.267 
 
Open Water Sites 

Year 0.003 
(±0.033) 

0.008 
(±0.015) 

-0.065 
(±0.133) 

-0.003 
(±0.003) 

-0.004 
(±0.005) 

-0.006 
(±0.035) 

Intercept 23.240 
(±66.265) 

-10.113 
(±30.726) 

158.325 
(±267.456) 

14.199** 

(±5.798) 
9.616 

(±10.879) 
13.087 

(±69.465) 
Observations 20 20 20 20 20 12 
Log 
Likelihood -22.806 0.194 -52.124 13.526 1.205 0.841 

AIC 53.612 7.611 112.248 -19.052 5.589 6.318 
BIC 57.173 11.173 115.810 -15.490 9.151 7.528 
 
Tidal Creek Sites 

Year 0.007 
(±0.040) 

0.008 
(±0.015) 

-0.141 
(±0.180) 

-0.005 
(±0.003) 

0.002 
(±0.009) 

0.037 
(±0.031) 

Intercept 15.092 
(±80.694) 

-12.269 
(±29.868) 

312.575 
(±361.905) 

16.611** 

(±6.952) 
-3.684 

(±17.902) 
-72.817 

(±63.305) 
Observations 20 20 20 20 20 12 
Log 
Likelihood -16.631 -11.482 -55.220 14.652 -0.796 -6.108 

AIC 41.262 30.965 118.441 -21.305 9.591 20.216 
BIC 44.824 34.526 122.002 -17.743 13.153 21.426 
Notes: ***p≤0.01, **p≤0.05, *p≤0.10 
†Log transformed variable. 

 
  



 178 

 
 
  

Table 11.  Generalized least squares time-series regression results: sediment quality (1999-
2018). Values indicate µ ± SE with positive values indicating increasing trend over time. 
 
 Metals 

(ug/g) 
PAHs 
(ng/g) 

PCBs 
(ng/g) 

DDT 
(ng/g) 

PBDEs 
(ng/g) 

 
All Sites 

  

Year -0.854 
(±1.112) 

-0.923 
(±3.506) 

-0.016 
(±0.026) 

0.006 
(±0.005) 

-0.001 
(±0.009) 

Intercept 1,785.08 
(±2,234.15) 

1,921.94 
(±7,041.13) 

32.97 
(±53.19) 

-12.01 
(±9.21) 

2.10 
(±17.94) 

Observations 20 20 20 20 16 
Log Likelihood -82.470 -104.227 -21.105 5.760 2.410 
AIC 172.940 216.453 50.211 -3.520 3.180 
BIC 176.501 220.015 53.772 0.042 5.736 
 
Open Water Sites 

 

Year -0.849 
(±1.391) 

-3.343 
(±2.666) 

-0.016 
(±0.030) 

0.005 
(±0.004) 

-0.002 
(±0.010) 

Intercept 1,766.82 
(±2,792.95) 

6,793.42 
(±5,353.86) 

32.35 
(±60.50) 

-9.81  
(±8.92) 

3.50 
(±20.95) 

Observations 20 20 20 20 16 
Log Likelihood -84.997 -107.287 -22.300 11.333 0.608 
AIC 177.994 222.573 52.600 -14.666 6.784 
BIC 181.556 226.135 56.162 -11.104 9.340 
 
Tidal Creek Sites 

Year -0.801 
(±0.769) 

0.809 
(±4.705) 

-0.017 
(±0.023) 

0.007 
(±0.007) 

-0.0004 
(±0.007) 

Intercept 1,686.80 
(±1,545.21) 

-1,565.67 
(±9,449.94) 

34.46 
(±46.48) 

-13.74 
(±14.01) 

0.75 
(±14.96) 

Observations 20 20 20 20 16 
Log Likelihood -82.952 -105.475 -21.075 -2.704 4.444 
AIC 173.905 218.950 50.149 13.408 -0.887 
BIC 177.466 222.512 53.711 16.969 1.669 
Notes: ***p≤0.01, **p≤0.05, *p≤0.10 
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Table 12.  Generalized least squares time-series regression results: ERMQ sediment quality 
(1999-2018). Values indicate µ ± SE with positive values indicating increasing trend over time. 
 
 Metals 

(ERMQ) 
PAHs 

(ERMQ) 
PCBs 

(ERMQ) 
DDT 

(ERMQ) 
All 

(ERMQ) 
 
All Habitats 

 

Year -0.0004 
(±0.0004) 

-0.00000 
(±0.0001) 

-0.0001 
(±0.0001) 

0.0001 
(±0.0001) 

-0.0002 
(±0.0002) 

Intercept 0.798 
(±0.716) 

0.009 
(±0.244) 

0.183 
(±0.296) 

-0.261 
(±0.200) 

0.328 
(±0.407) 

Observations 20 20 20 20 20 
Log Likelihood 56.818 79.551 72.368 74.719 74.407 
AIC -105.636 -151.102 -136.736 -141.439 -140.814 
BIC -102.075 -147.540 -133.174 -137.877 -137.253 
 
Open Water 

 

Year -0.0005 
(±0.001) 

-0.0001 
(±0.0001) 

-0.0001 
(±0.0002) 

0.0001 
(±0.0001) 

-0.0002 
(±0.0002) 

Intercept 0.997 
(±1.025) 

0.196 
(±0.191) 

0.180 
(±0.336) 

-0.213 
(±0.193) 

0.445 
(±0.489) 

Observations 20 20 20 20 20 
Log Likelihood 56.132 76.935 71.173 80.288 73.368 
AIC -104.263 -145.869 -134.346 -152.576 -138.735 
BIC -100.702 -142.308 -130.785 -149.015 -135.174 
 
Tidal Creek 

 

Year -0.0003 
(±0.0003) 

0.0001 
(±0.0002) 

-0.0001 
(±0.0001) 

0.0002 
(±0.0002) 

-0.0001 
(±0.0001) 

Intercept 0.712 
(±0.538) 

-0.140 
(±0.315) 

0.192 
(±0.258) 

-0.299 
(±0.304) 

0.141 
(±0.261) 

Observations 20 20 20 20 20 
Log Likelihood 54.641 77.722 72.399 66.256 69.587 
AIC -101.282 -147.444 -136.797 -124.512 -131.174 
BIC -97.721 -143.882 -133.236 -120.950 -127.613 
Notes: ***p≤0.01, **p≤0.05, *p≤0.10 
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Table 13.  Generalized least squares time-series regression results: biological quality (1999-
2018). Values indicate µ ± SE with positive values indicating increasing trend over time. 
 
 Nekton Sp. 

Richness 
Nekton 

Abundance 
Benthic Sp. 

Richness 
Benthic 

Abundance BIBI MAMBI 

 
All Habitats 

  

Year -0.22*** 

(±0.08) 
-0.002*** 

(±0.001) 
-0.38*** 

(±0.14) 
-22.4 

(±54.1) 
-0.007 

(±0.010) 
-0.003*** 

(±0.001) 

Intercept 459.85*** 

(±154.71) 
4.860*** 

(±1.422) 
785.11*** 

(±279.85) 
48,832 

(±108,609) 
17.759 

(±19.483) 
5.571*** 

(±1.635) 
Observations 20 20 20 20 20 20 
Log 
Likelihood -34.789 40.973 -54.076 -157.729 -0.921 38.686 

AIC 77.578 -73.947 116.152 323.458 9.843 -69.372 
BIC 81.139 -70.385 119.713 327.019 13.404 -65.811 
 
Open Water   

Year -0.208** 

(±0.091) 
-0.001 

(±0.001) 
-0.503*** 

(±0.113) 
-60.471 

(±59.356) 
-0.012* 

(±0.007) 
-0.001 

(±0.001) 

Intercept 428.093** 

(±181.853) 
1.150 

(±1.898) 
1,038.109*** 

(±227.213) 
125,879 

(±119,217) 
28.152** 

(±14.169) 
3.152 

(±1.996) 
Observations 20 20 20 20 20 20 
Log 
Likelihood -38.884 49.408 -55.291 -162.737 -2.879 30.260 

AIC 85.767 -90.815 118.582 333.474 13.758 -52.521 
BIC 89.329 -87.254 122.143 337.036 17.320 -48.959 
 
Tidal Creek   

Year -0.247*** 

(±0.076) 
-0.004*** 

(±0.001) 
-0.258 

(±0.178) 
1.993 

(±46.309) 
-0.004 

(±0.012) 
-0.003*** 

(±0.001) 

Intercept 507.562*** 

(±151.972) 
7.398*** 

(±2.116) 
542.962 

(±356.845) 
-577.4 

(±93,012) 
10.597 

(±23.855) 
7.167*** 

(±2.179) 
Observations 20 20 20 20 20 20 
Log 
Likelihood -35.791 32.265 -62.308 -160.854 -10.458 30.380 

AIC 79.582 -56.530 132.615 329.708 28.915 -52.759 
BIC 83.143 -52.969 136.177 333.270 32.477 -49.198 
Notes: ***p≤0.01, **p≤0.05, *p≤0.10 
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Notes: ***p≤0.01, **p≤0.05, *p≤0.10 
  

Table 14.  Generalized least squares time-series regression results: temperature (1999-2018). 
Values indicate µ ± SE with positive values indicating increasing trend over time. 
 
 Annual  

Temp. 
(°C) 

Winter 
Temp. 

(°C) 

Spring 
Temp. 

(°C) 

Summer 
Temp. 

(°C) 

Fall 
Temp. 

(°C) 

Extreme 
Temp. 

(days/year) 
 
All Stations 

  

Year 0.051*** 

(0.018) 
0.070 

(0.076) 
0.025 

(0.032) 
0.042 

(0.028) 
0.043 

(0.039) 
0.278 

(0.409) 

Intercept -82.484** 

(36.575) 
-130.128 

(151.827) 
-31.682 

(64.976) 
-57.627 

(55.364) 
-66.574 

(79.251) 
-537.726 

(821.603) 
Observations 20 20 20 20 20 20 
Log Likelihood -13.551 -37.960 -28.069 -18.937 -24.360 -71.043 
AIC 35.102 83.921 64.139 45.874 56.719 150.085 
BIC 38.663 87.482 67.700 49.435 60.281 153.647 
 
Brookgreen Gardens, SC  

Year -0.006 
(0.041) 

0.008 
(0.080) 

-0.046 
(0.037) 

0.004 
(0.064) 

0.016 
(0.082) 

-0.329 
(0.338) 

Intercept 29.937 
(81.817) 

-6.704 
(159.881) 

109.343 
(74.149) 

18.243 
(129.376) 

-12.919 
(164.414) 

678.817 
(678.352) 

Observations 19 20 20 18 17 19 
Log Likelihood -21.502 -39.622 -29.863 -20.925 -22.373 -66.392 
AIC 51.004 87.244 67.726 49.851 52.747 140.784 
BIC 54.337 90.805 71.288 52.941 55.579 144.116 
 
Charleston Int’l Airport, SC 

Year 0.068*** 

(0.017) 
0.080 

(0.080) 
0.048 

(0.031) 
0.066*** 

(0.020) 
0.062* 

(0.034) 
0.595 

(0.381) 

Intercept -117.328*** 

(34.207) 
-148.877 

(160.767) 
-77.900 

(63.012) 
-105.247*** 

(40.750) 
-105.451 
(67.685) 

-1,174.225 
(764.664) 

Observations 20 20 20 20 20 20 
Log Likelihood -10.155 -38.097 -27.258 -19.038 -25.497 -72.985 
AIC 28.310 84.193 62.515 46.075 58.994 153.969 
BIC 31.871 87.755 66.077 49.637 62.556 157.531 
 
Savannah Int’l Airport, SC 

Year 0.087*** 

(0.019) 
0.119 

(0.075) 
0.071* 

(0.040) 
0.069*** 

(0.025) 
0.077** 

(0.036) 
0.532 

(0.652) 

Intercept -155.173*** 

(37.883) 
-227.883 

(150.317) 
-123.344 
(79.986) 

-111.678** 

(49.478) 
-134.238* 

(72.398) 
-1,047.063 

(1,309.834) 
Observations 20 20 20 20 20 20 
Log Likelihood -12.552 -36.941 -29.717 -18.769 -23.432 -75.055 
AIC 33.105 81.883 67.434 45.537 54.865 158.111 
BIC 36.666 85.444 70.996 49.099 58.426 161.672 
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Table 15.  Generalized least squares time-series regression results: precipitation (1999-2018). 
Values indicate µ ± SE with positive values indicating increasing trend over time. 
 
 Annual 

Precip. 
(cm) 

Winter 
Precip. 

(cm) 

Spring 
Precip. 

(cm) 

Summer 
Precip. 

(cm) 

Fall 
Precip. 

(cm) 

Extreme 
Precip. 

(days/year) 
 
All Stations 

  

Year 0.965 
(1.091) 

0.356 
(0.232) 

0.530 
(0.339) 

0.163 
(0.259) 

-0.222 
(0.731) 

0.251** 

(0.109) 

Intercept -1,812.542 
(2,191.76) 

-692.204 
(465.75) 

-1,037.201 
(680.475) 

-281.016 
(520.885) 

475.459 
(1,467.665) 

-487.072** 

(218.117) 
Observations 20 20 20 20 20 20 
Log Likelihood -79.612 -68.383 -70.735 -66.350 -74.920 -50.025 
AIC 167.225 144.765 149.471 140.699 157.839 108.049 
BIC 170.786 148.327 153.032 144.261 161.401 111.611 
 
Brookgreen Gardens, SC   

Year 0.388 
(1.699) 

0.154 
(0.321) 

0.340 
(0.362) 

0.466 
(0.649) 

-0.807 
(0.907) 

0.212 
(0.184) 

Intercept -645.164 
(3,412.72) 

-283.907 
(644.125) 

-652.944 
(727.961) 

-892.575 
(1,304.26) 

1,657.012 
(1,822.703) 

-407.919 
(369.426) 

Observations 20 20 20 19 18 20 
Log Likelihood -87.743 -68.612 -72.409 -72.292 -73.332 -54.596 
AIC 183.486 145.224 152.819 152.584 154.664 117.192 
BIC 187.047 148.785 156.380 155.916 157.754 120.753 
 
Charleston Int’l Airport, SC 

Year 1.851** 

(0.917) 
0.277 

(0.241) 
0.553 

(0.391) 
0.340 

(0.395) 
0.127 

(1.000) 
0.358*** 

(0.115) 

Intercept -3,588.61* 

(1,841.46) 
-533.155 

(483.442) 
-1,085.92 
(785.86) 

-633.728 
(792.653) 

-223.994 
(2,007.924) 

-700.260*** 

(231.203) 
Observations 20 20 20 20 20 20 
Log Likelihood -84.930 -69.267 -70.430 -75.297 -79.540 -55.195 
AIC 177.859 146.534 148.861 158.594 167.080 118.389 
BIC 181.421 150.095 152.422 162.155 170.641 121.951 
 
Savannah Int’l Airport, SC 

Year 1.200 
(0.778) 

0.601** 

(0.254) 
0.723* 

(0.430) 
-0.192 

(0.458) 
-0.012 

(0.399) 
0.126 

(0.211) 

Intercept -2,294.74 
(1,563.10) 

-1,185.34** 

(509.23) 
-1,427.17* 

(864.010) 
428.249 

(920.510) 
48.402 

(801.966) 
-236.317 

(423.056) 
Observations 20 20 20 20 20 20 
Log Likelihood -83.858 -71.305 -75.759 -73.461 -70.551 -56.477 
AIC 175.715 150.609 159.518 154.921 149.102 120.955 
BIC 179.277 154.171 163.080 158.483 152.664 124.516 
Notes: ***p≤0.01, **p≤0.05, *p≤0.10 
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Table 16.  Linear models meta-analysis summaries: mean adjusted R2 by spatial grouping 
and response category 
 
Spatial  
Unit 

Mean Area 
(ha) 

Water 
Quality 

Sediment 
Quality 

Biological 
Quality 

All      
Models 

 
Buffer 

     

1 314 0.3537 0.3611 0.2095 0.3045 
2 1,257 0.3596 0.3695 0.2091 0.3091 
3 2,827 0.3497 0.3752 0.2162 0.3193 
All 1,466 0.3543 0.3686 0.2116 0.3093 
 
Grid       

25 2,500 0.3401 0.2891 0.2137 0.2667 
100 10,000 0.3309 0.3120 0.2144 0.2780 
400 40,000 0.3134 0.3187 0.2213 0.2823 
1600 160,000 0.3055 0.3265 0.2148 0.2831 
All 53,125 0.3267 0.3116 0.2161 0.2775 
 
HUC      

08 262,213 0.3239 0.3894 0.2256 0.3222 
10 51,632 0.3268 0.4013 0.2292 0.3301 
12 9,581 0.3472 0.3850 0.2294 0.3237 
14 8,937 0.3089 0.3923 0.2271 0.3227 
All 83,091 0.3267 0.3920 0.2278 0.3247 
      
Total 45,894 0.3327 0.3564 0.2191 0.3033 
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Table 17.  Linear model meta-analysis parameter summaries: water quality models (N=22). 
Mean coefficient estimate represents positive (+) or negative (-) correlation between 
independent and dependent variable (bacteria concentration).  
 
Independent Variable Frequency (%) Mean Coefficient Estimate (±) 
 
Physical Habitat   
Channel Width  100 - 
Salinity  100 - 
Station Depth 9 - 
 
Landcover and Land Use   

Impervious Cover 64 + 
Marsh 41 - 
Population Density  23 + 
Forested † 14 + 
Mixed Forest 14 + 
Well Drained Soils † 5 - 
All Ponds 5 - 
 
Weather and Climate   

Precipitation 2-day Total 95 + 
Temperature 30-day Average 50 + 
Precipitation 14-day Total 36 - 
SP02 36 - 
PDSI 14 - 
Notes: Full list of independent variables available in Appendices B. F, and G.  
† Condensed landcover categories (Appendix F) 
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Table 18.  Linear model meta-analysis parameter summaries: sediment quality models 
(N=110). Mean coefficient estimate represents positive (+) or negative (-) correlation between 
independent and dependent variable (sediment contamination).  
 
Independent Variable Frequency (%) Mean Coefficient Estimate (±) 
 
Physical Habitat   
Silt-Clay Content 75 + 
Salinity 20 - 
TOC Sediment  10 + 
Channel Width  8 + 
 
Landcover and Land Use   

Impervious Cover 47 + 
Population Density  37 + 
Marsh 17 - 
Agricultural † 11 + 
Cultivated Crops 9 + 
Open Water 7 - 
Group C Soils 5 + 
Poorly Drained Soils † 5 + 
All Ponds Density 5 - 
Group D Soils 5 - 
Developed High † 4 + 
High Intensity Developed 4 + 
Mixed Forest 4 - 
Group A Soils 4 - 
Forested † 1 - 
Group B Soils 1 - 
Well Drained Soils † 1 - 
 
Weather and Climate   

Winter Precipitation 60 + 
Winter Temperature 40 - 
Preceding Fall Precipitation 30 - 
Spring Temperature  23 + 
Spring Precipitation 20 + 
SP02 20 + 
AMO 10 + 
Summer Temperature  7 + 
Notes: Full list of independent variables available in Appendices B. F, and G.  
† Condensed landcover categories (Appendix F) 
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Table 19.  Linear model meta-analysis parameter summaries: biological quality models 
(N=77). Mean coefficient estimate represents positive (+) or negative (-) correlation between 
independent and dependent variable (biological condition).  
 
Independent Variable Frequency (%) Mean Coefficient Estimate (±) 
Physical Habitat   
Salinity 86 + 
Channel Width 82 - 
Silt-Clay Content 57 - 
Station Depth 14 + 
Landcover and Land Use   
Marsh 39 + 
Impervious Cover 19 - 
Developed Low † 16 + 
Agricultural † 10 + 
Open Spaces Developed 9 + 
Population Density 9 - 
Developed High † 5 - 
Group B Soils 5 + 
Cultivated Crops 3 - 
Forested † 3 + 
Mixed Forest 3 + 
Medium Intensity Developed 1 - 
Open Water 1 + 
Group C Soils 1 - 
Group D Soils 1 - 
All Ponds 1 + 
Weather and Climate   
Temperature 90-day Average 57 - 
Precipitation 45-day Total 57 + 
Annual Temperature 29 - 
NAO 29 + 
Winter Temperature 14 + 
Precipitation 30-day Total 14 + 
SP02 14 + 
Preceding Annual Temperature 10 - 
Notes: Full list of independent variables available in Appendices B. F, and G.  
† Condensed landcover categories (Appendix F) 
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Table 20.  Linear model meta-analysis parameter summaries: all models (N=209). Mean 
coefficient estimate represents positive (+) or negative (-) correlation between independent and 
dependent variables. 
 
Independent Variable Frequency (%) Mean Coefficient Estimate (±) 
Physical Habitat   
Silt-Clay Content 61 - 
Salinity 53 + 
Channel Width 45 - 
Station Depth 6 + 
TOC Sediment 5 + 
Landcover and Land Use   
Impervious Cover 39 - 
Marsh 28 + 
Population Density 25 + 
Agricultural † 10 + 
Cultivated Crops 6 - 
Developed Low † 6 + 
Mixed Forest 4 + 
Open Water 4 - 
Developed High † 4 - 
Open Spaces Developed 3 + 
Group C Soils 3 + 
Forested † 3 + 
Group D Soils 3 - 
Poorly Drained Soils † 3 + 
All Ponds Density 3 - 
Group B Soils 2 + 
High Intensity Developed 2 + 
Group A Soils  2 - 
Well Drained Soils † 1 - 
All Ponds 1 + 
Medium Intensity Developed <1 - 
Weather and Climate   
Winter Precipitation 32 + 
Winter Temperature 26 + 
Temperature 90-day Average 21 - 
Precipitation 45-day Total 21 + 
SP02 20 + 
Preceding Fall Precipitation 16 - 
Spring Temperature 12 + 
Annual Temperature 11 - 
Spring Precipitation 11 + 
NAO 11 + 
Precipitation 2-day Total 10 + 
Temperature 30-day Average 5 + 
Precipitation 30-day Total 5 + 
AMO 5 + 
Preceding Annual Temperature 4 - 
Summer Temperature 4 + 
Precipitation 14-day Total 4 - 
PDSI 1 - 
Notes: Full list of independent variables available in Appendices B. F, and G.  
† Condensed landcover categories (Appendix F) 
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Table 21.  Linear model output summaries: sediment ERMQ scores 
 
 Dependent Variables: 

 All  DDT Metals PAHs PCBs 
Observations 788 780 801 773 773 
Adjusted R2 0.74 0.17 0.82 0.45 0.32 
Residual Std. Error 0.004752 0.002420 0.011716 0.001796 0.002628 
F Statistic 452.47*** 

(df=5; 782) 
33.60*** 

(df=5; 774) 
740.39*** 

(df=5; 795) 
91.12*** 

(df=7; 765) 
74.27*** 

(df=5; 767) 

Intercept 0.005197*** 

(±0.000485) 
0.001223*** 

(±0.000251) 
0.000756 

(±0.002031) 
-0.000668** 

(±0.000283) 
0.001269*** 

(±0.000154) 
 
Physical Habitat 

Channel Width (m)†    0.000147*** 

(±0.000044)  

Silt-Clay Content (%) 0.000306*** 

(±0.000007)  0.000967*** 

(± 0.000016) 
0.000057*** 

(±0.000003) 
0.000035*** 

(±0.000004) 

TOC Sediment (mg/L)  0.000511*** 

(±0.000060)    

 
Landcover and Land Use  

Agricultural (%)  0.000073*** 

(±0.000018)    

Mixed Forest (%)    -0.000140*** 

(±0.000029)  

Open Water (%)  -0.000031*** 

(±0.000005)    

Upland Impervious 
Cover (%)  0.000068** 

(±0.000027) 
0.000430*** 

(±0.000116)   

Population Density 
(persons per ha) 

0.002139*** 

(±0.000210)   0.000961*** 

(±0.000084) 
0.000588*** 

(±0.000117) 

Group A Soils (%) -0.000062*** 

(±0.000013)     

Poorly Drained Soils (%)   0.000118*** 

(±0.000029)   

 
Weather and Climate 

Spring Precipitation (cm)     0.000108*** 

(±0.000009) 

Winter Precipitation (cm) 0.000081*** 

(±0.000019) 
0.000067*** 

(±0.000010)  0.000040*** 

(±0.000007)  

Winter Temperature (°C) -0.000315*** 

(±0.000106)   -0.000167*** 

(±0.000041) 
-0.000455*** 

(±0.000060) 

Fall Precipitation (cm)   -0.000116*** 

(±0.000029)   

SP02   0.002703*** 

(±0.000500)   

Winter Precipitation X 
Winter Temperature    -0.000020*** 

(±0.000004)  

Spring Precipitation X 
Winter Temperature     -0.000047*** 

(±0.000006) 
Notes: All models were analyzed at the 10-digit HUC scale. Values in column represent coefficient 
estimate with error term (±) in parentheses.  
***p≤0.01, **p≤0.05, *p≤0.10; †Log transformed variable 
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Table 22.  Linear model output summaries: bacteria contamination 
 
 Dependent Variables: 
 Enterococcus spp. 

(MPN/100mL)† 
Fecal coliform 

(MPN/100mL)† 
Observations 337 798 
Adjusted R2 0.24 0.46 
Residual Std. Error 0.6172 0.5195 
F Statistic 22.60*** 

(df=5; 331) 
98.18*** 

(df=7; 790) 

Intercept -2.4323* 

(±1.2589) 
3.2847*** 

(±0.1314) 
 

Physical Habitat 

Channel Width (m)† -0.1160*** 

(±0.0216) 
-0.1999*** 

(±0.0141) 

Salinity (ppt) -0.0350*** 

(±0.0044) 
-0.04290*** 

(±0.0023) 
 

Landcover and Land Use 

Marsh (%)  -0.0082*** 

(±0.0012) 

Mixed Forest (%)  0.0174*** 

(±0.0053) 

Upland Impervious Cover (%) 0.0112*** 

(±0.0040) 
0.01440*** 

(±0.0024) 
 

Weather and Climate 

2-day Precipitation Total (in) 0.1734*** 

(±0.0449) 
0.1733*** 

(±0.0281) 

30-day Temperature Average (°C) 0.1693*** 

(±0.0459)  

PDSI  -0.0248*** 

(±0.0094) 
 Notes: All models were analyzed at the 2 km buffer scale. Values in column represent coefficient 
estimate with error term (±) in parentheses. 
***p≤0.01, **p≤0.05, *p≤0.10 
†Log transformed variable 
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Table 23.  Linear model output summaries: trawl data 
 
 Dependent Variables: 
 Nekton Abundance 

(individuals/m2)† 
Tidal Creek Nekton 

Species Richness 
Open Water Nekton 

Species Richness 
Observations 740 374 365 
Adjusted R2 0.18 0.15 0.17 
Residual Std. Error 1.3079 5.6331 5.1978 
F Statistic 42.59*** 

(df=4; 735) 
12.03*** 

(df=6; 367) 
15.70*** 

(df=5; 359) 

Intercept -1.7683*** 

(±0.1788) 
11.6192*** 

(±2.3627) 
9.2077*** 

(±2.0823) 
 
Physical Habitat 

Channel Width (m) † -0.3538*** 

(±0.0312) 
-1.3080*** 

(±0.2631) 
-0.8155* 

(±0.4387) 

Salinity (ppt)  0.1493*** 

(±0.0375) 
0.1552*** 

(±0.0337) 
 
Landcover and Land Use 

Agricultural (%)   0.1956*** 

(±0.0396) 

Marsh (%)  0.0775*** 

(±0.0269)  

Upland Impervious 
Cover (%) 

-0.0167** 

(±0.0067)   

 
Weather and Climate 
30-day Precipitation 
Total (cm)  0.1031*** 

(±0.0396)  

Annual Temperature 
(°C) 

-0.2809*** 

(±0.0775)  -1.338*** 

(±0.4521) 
Preceding Annual 
Temperature (°C)  -0.9517** 

(±0.4656)  

SP02   0.9435*** 

(±0.3613) 

NAO 0.1537*** 

(±0.0474) 
1.0911*** 

(±0.2943)  

Notes: All models were analyzed at the 12-digit HUC scale. Values in column represent coefficient 
estimate with error term (±) in parentheses. 
***p≤0.01, **p≤0.05, *p≤0.10 
†Log transformed variable 
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Table 24.  Linear model output summaries: benthic data 
 
 Dependent variable: 
 Benthic Abundance 

(individuals/m2)† 
Benthic Species 

Richness† MAMBI 

Observations 795 806 571 
Adjusted R2 0.19 0.42 0.47 
Residual Std. Error 1.0162 0.5593 0.09203 
F Statistic 32.02*** 

(df=6; 788) 
85.47*** 

(df=7; 798) 
71.65*** 

(df=7; 563) 

Intercept 9.1743*** 

(±0.5894) 
3.181088*** 

(±0.3354) 
0.46393*** 

(±0.06505) 
 
Physical Habitat    

Channel Width (m)†  0.0358*** 

(±0.01335) 
0.01721*** 

(±0.00271) 

Salinity (ppt) 0.0476*** 

(±0.0046) 
0.0514*** 

(±0.0026) 
0.00595*** 

(±0.00050) 

Silt-Clay Content (%) -0.0064*** 

(±0.0015) 
-0.0042*** 

(±0.0008) 
-0.00060*** 

(±0.00015) 
 
Landcover and Land Use    

Marsh (%) 0.0092*** 

(±0.0030) 
0.0052*** 

(±0.0018)  

Developed Open Spaces 
(%)   0.00601*** 

(±0.00077) 
Low Intensity Developed 
(%)  0.0050*** 

(±0.0014)  

High Intensity Developed 
(%)   -0.00482*** 

(±0.00091) 
 
Weather and Climate    

45-day Precipitation Total 
(cm) 

0.0125*** 

(±0.0042) 
0.0133*** 

(±0.0023) 
0.00100** 

(±0.00047) 
90-day Temperature 
Average (°C) 

-0.1279*** 

(±0.0234) 
-0.0862*** 

(±0.0127) 
-0.01400*** 

(±0.00245) 

Winter Temperature (°C) 0.08090*** 

(±0.0227)   

Notes: All models were analyzed at the 12-digit HUC scale with the exception of MAMBI which was 
analyzed at the 400 km2 scale. Values in column represent coefficient estimate with error term (±) in 
parentheses. 
***p≤0.01, **p≤0.05, *p≤0.10 
†Log transformed variable 
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Table 25.  Summary of population growth and climate change projections for coastal South 
Carolina 
 
Parameter Year Projection Percent Change Prediction 
Population 2010 Baseline - 1,224,717 (0.66 persons/ha) 
 2065 Low +130% 2,808,625 (1.52) 
 2065 High +180% 3,421,083 (1.86) 
Impervious Cover 2011 Baseline - 2.59% 
 2065 Low +130% 5.96 
 2065 High +180% 7.26 
Developed Landcover 2011 Baseline - 9.89% 
 2065 Low +130% 22.75 
 2065 High +180% 27.69 
Annual Precipitation 1980-2010 Baseline - 129.7 cm 
 2065 Low +5% 136.4 
 2065 High +10% 142.8 
Annual Temperature 1980-2010 Baseline - 19.0 °C 
 2065 Low +5% 20.9 
 2065 High +6.5% 21.4 
Notes: Population, impervious cover, and developed landcover calculated for eight coastal South 
Carolina counties. Baseline conditions determined from 2010 census data and 2011 NLCD data (US 
Census Bureau, 2018; Yang et al., 2018). Population growth predictions from Hauer dataset (2019). 
Precipitation and temperature data from 30-year climate normal data averaged from three weather 
stations (Brookgreen Gardens, Charleston Int’l Airport, Savannah Int’l Airport) (NOAA NCEI). Percent 
change precipitation and percent change temperature values taken from Fourth National Climate 
Assessment’s Climate Science Special Report (Easterling et al., 2017, Vose et al., 2017).  
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Table 26.  Scenarios of population growth and climate change for coastal South Carolina 
 

Scenario Change Projection Population 
Growth 1 

Temperature 
Change 2 

Precipitation 
Change 3 

0 No Change (Baseline) – – – – 

1 Population Only Low +130% – – 

2 Temperature Only Low – +5% -- 

3 Precipitation Only Low – – +5% 

4 Temperature and 
Precipitation Low – +5% +5% 

5 Population and 
Temperature Low +130% +5% – 

6 Population and 
Precipitation Low +130% – +5% 

7 
Population, 

Temperature, and 
Precipitation 

Low +130% +5% +5% 

8 Population Only High +180% – – 

9 Temperature Only High – +6.5% – 

10 Precipitation Only High – – +10% 

11 Temperature and 
Precipitation High – +6.5% +10% 

12 Population and 
Temperature High +180% +6.5% – 

13 Population and 
Precipitation High +180% – +10% 

14 
Population, 

Temperature, and 
Precipitation 

High +180% +6.5% +10% 

Notes: 1 Hauer, 2019 
2 Vose et al., 2017 
3 Easterling et al., 2017 
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Table 27.  Scenario prediction model outputs: Enterococcus spp. (MPN/100mL) 
 

 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 3.18 (±1.03) - 6.49 (±1.81) - 4.58 (±1.10) - 
1 3.94 (±1.36) 24.12 7.50 (±2.21) 15.57 5.47 (±1.45) 19.38 
2 6.16 (±2.18) 93.97 11.85 (±4.18) 82.50 8.57 (±2.65) 87.07 
3 3.20 (±1.03) 0.85 6.55 (±1.82) 0.83 4.62 (±1.11) 0.83 
4 6.20 (±2.19) 95.42 11.94 (±4.21) 83.93 8.64 (±2.67) 88.50 
5 7.47 (±2.89) 135.32 13.59 (±5.08) 109.21 10.10 (±3.43) 120.30 
6 3.97 (±1.37) 25.12 7.57 (±2.22) 16.52 5.52 (±1.46) 20.34 
7 7.53 (±2.91) 137.04 13.69 (±5.12) 110.83 10.17 (±3.45) 121.96 
8 4.27 (±1.61) 34.54 7.93 (±2.48) 22.11 5.85 (±1.72) 27.63 
9 7.42 (±3.30) 133.55 14.11 (±6.29) 117.26 10.26 (±4.19) 123.75 
10 3.23 (±1.04) 1.70 6.60 (±1.83) 1.67 4.66 (±1.12) 1.67 
11 7.52 (±3.34) 136.98 14.33 (±6.38) 120.64 10.41 (±4.25) 127.12 
12 9.63 (±4.83) 203.16 17.00 (±8.20) 161.83 12.81 (±5.87) 179.45 
13 4.34 (±1.63) 36.68 8.06 (±2.52) 24.10 5.94 (±1.74) 29.68 
14 9.76 (±4.90) 207.49 17.26 (±8.32) 165.85 13.00 (±5.95) 183.58 

Notes: For detailed description of scenarios, see Table 26. 
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Table 28.  Scenario prediction model outputs: fecal coliform (MPN/100mL) 
 

 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 3.54 (±0.55) - 9.12 (±1.24) - 5.76 (±0.66) - 
1 4.92 (±0.81) 39.20 11.42 (±1.54) 25.22 7.56 (±0.92) 31.23 
2 3.80 (±0.54) 7.50 9.71 (±1.21) 6.40 6.15 (±0.62) 6.81 
3 3.83 (±0.55) 8.37 9.78 (±1.22) 7.25 6.20 (±0.62) 7.66 
4 3.83 (±0.55) 8.37 9.78 (±1.22) 7.25 6.20 (±0.62) 7.66 
5 4.92 (±0.81) 39.20 11.42 (±1.54) 25.22 7.56 (±0.92) 31.23 
6 4.96 (±0.82) 40.28 11.51 (±1.55) 26.21 7.62 (±0.92) 32.24 
7 4.96 (±0.82) 40.28 11.51 (±1.55) 26.21 7.62 (±0.92) 32.24 
8 5.42 (±1.00) 53.28 12.16 (±1.75) 33.24 8.17 (±1.13) 41.85 
9 3.80 (±0.54) 7.50 9.71 (±1.21) 6.40 6.15 (±0.62) 6.81 
10 3.86 (±0.55) 9.25 9.86 (±1.23) 8.10 6.25 (±0.63) 8.52 
11 3.86 (±0.55) 9.25 9.86 (±1.23) 8.10 6.25 (±0.63) 8.52 
12 5.42 (±1.00) 53.28 12.16 (±1.75) 33.24 8.17 (±1.13) 41.85 
13 5.50 (±1.01) 55.62 12.35 (±1.78) 35.33 8.30 (±1.15) 44.03 
14 5.50 (±1.01) 55.62 12.35 (±1.78) 35.33 8.30 (±1.15) 44.03 

Notes: For detailed description of scenarios, see Table 26. 
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Table 29. Scenario prediction model outputs: combined ERMQ for all contaminants 
 

 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 0.0109 (±0.0004) - 0.0143 (±0.0004) - 0.0126 (±0.0004) - 
1 0.0126 (±0.0005) 15.05 0.0158 (±0.0005) 10.78 0.0142 (±0.0005) 12.64 
2 0.0100 (±0.0005) -8.86 0.0133 (±0.0005) -6.81 0.0116 (±0.0005) -7.71 
3 0.0107 (±0.0003) -2.14 0.0141 (±0.0004) -1.67 0.0124 (±0.0003) -1.88 
4 0.0101 (±0.0005) -7.61 0.0135 (±0.0005) -5.85 0.0118 (±0.0005) -6.62 
5 0.0120 (±0.0006) 9.57 0.0153 (±0.0006) 6.60 0.0136 (±0.0006) 7.90 
6 0.0127 (±0.0005) 16.3 0.0160 (±0.0005) 11.73 0.0143 (±0.0005) 13.73 
7 0.0121 (±0.0006) 10.83 0.0154 (±0.0006) 7.55 0.0137 (±0.0006) 8.98 
8 0.0133 (±0.0006) 22.14 0.0166 (±0.0006) 15.93 0.0150 (±0.0006) 18.64 
9 0.0098 (±0.0006) -10.31 0.0132 (±0.0006) -7.91 0.0115 (±0.0006) -8.95 
10 0.0108 (±0.0004) -0.96 0.0142 (±0.0004) -0.77 0.0125 (±0.0004) -0.85 
11 0.0101 (±0.0006) -7.87 0.0134 (±0.0006) -6.05 0.0117 (±0.0006) -6.84 
12 0.0126 (±0.0008) 15.23 0.0158 (±0.0008) 10.65 0.0142 (±0.0008) 12.65 
13 0.0136 (±0.0007) 24.57 0.0169 (±0.0006) 17.79 0.0152 (±0.0006) 20.75 
14 0.0129 (±0.0008) 17.66 0.0161 (±0.0008) 12.51 0.0145 (±0.0008) 14.76 

Notes: For detailed description of scenarios, see Table 26. 
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Table 30.  Scenario prediction model outputs: ERMQ DDT 
 

 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 0.0014 (±0.0002) - 0.0017 (±0.0002) - 0.0016 (±0.0002) - 
1 0.0015 (±0.0003) 3.16 0.0018 (±0.0003) 4.47 0.0016 (±0.0003) 3.87 
2 0.0012 (±0.0002) -17.59 0.0015 (±0.0002) -13.88 0.0013 (±0.0002) -15.59 
3 0.0013 (±0.0002) -9.71 0.0016 (±0.0002) -7.22 0.0014 (±0.0002) -8.37 
4 0.0013 (±0.0002) -9.71 0.0016 (±0.0002) -7.22 0.0014 (±0.0002) -8.37 
5 0.0015 (±0.0003) 3.16 0.0018 (±0.0003) 4.47 0.0016 (±0.0003) 3.87 
6 0.0016 (±0.0003) 11.03 0.0019 (±0.0003) 11.14 0.0017 (±0.0003) 11.09 
7 0.0016 (±0.0003) 11.03 0.0019 (±0.0003) 11.14 0.0017 (±0.0003) 11.09 
8 0.0016 (±0.0004) 11.14 0.0019 (±0.0004) 11.53 0.0018 (±0.0004) 11.35 
9 0.0012 (±0.0002) -17.59 0.0015 (±0.0002) -13.88 0.0013 (±0.0002) -15.59 
10 0.0014 (±0.0002) -2.30 0.0017 (±0.0002) -0.94 0.0015 (±0.0002) -1.57 
11 0.0014 (±0.0002) -2.30 0.0017 (±0.0002) -0.94 0.0015 (±0.0002) -1.57 
12 0.0016 (±0.0004) 11.14 0.0019 (±0.0004) 11.53 0.0018 (±0.0004) 11.35 
13 0.0018 (±0.0004) 26.42 0.0021 (±0.0004) 24.47 0.0020 (±0.0004) 25.37 
14 0.0018 (±0.0004) 26.42 0.0021 (±0.0004) 24.47 0.0020 (±0.0004) 25.37 

Notes: For detailed description of scenarios, see Table 26. 
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Table 31.  Scenario prediction model outputs: ERMQ metals 
 

 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 0.0282 (±0.0008) - 0.0389 (±0.0008) - 0.0335 (±0.0008) - 
1 0.0303 (±0.0013) 7.48 0.0411 (±0.0014) 5.53 0.0357 (±0.0013) 6.36 
2 0.0284 (±0.0008) 0.71 0.0391 (±0.0008) 0.41 0.0337 (±0.0008) 0.54 
3 0.0282 (±0.0008) 0.01 0.0389 (±0.0008) -0.09 0.0335 (±0.0008) -0.05 
4 0.0282 (±0.0008) 0.01 0.0389 (±0.0008) -0.09 0.0335 (±0.0008) -0.05 
5 0.0303 (±0.0013) 7.48 0.0411 (±0.0014) 5.53 0.0357 (±0.0013) 6.36 
6 0.0301 (±0.0013) 6.78 0.0409 (±0.0014) 5.03 0.0355 (±0.0013) 5.77 
7 0.0301 (±0.0013) 6.78 0.0409 (±0.0014) 5.03 0.0355 (±0.0013) 5.77 
8 0.0310 (±0.0016) 10.08 0.0419 (±0.0017) 7.50 0.0364 (±0.0017) 8.59 
9 0.0284 (±0.0008) 0.71 0.0391 (±0.0008) 0.41 0.0337 (±0.0008) 0.54 
10 0.0280 (±0.0009) -0.65 0.0387 (±0.0009) -0.57 0.0333 (±0.0008) -0.60 
11 0.0280 (±0.0009) -0.65 0.0387 (±0.0009) -0.57 0.0333 (±0.0008) -0.60 
12 0.0310 (±0.0016) 10.08 0.0419 (±0.0017) 7.50 0.0364 (±0.0017) 8.59 
13 0.0306 (±0.0016) 8.72 0.0415 (±0.0017) 6.52 0.0360 (±0.0017) 7.45 
14 0.0306 (±0.0016) 8.72 0.0415 (±0.0017) 6.52 0.0360 (±0.0017) 7.45 

Notes: For detailed description of scenarios, see Table 26. 
 
  



 199 

Table 32.  Scenario prediction model outputs: ERMQ PAHs 
 

 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 0.0017 (±0.0002) - 0.0020 (±0.0002) - 0.0019 (±0.0001) - 
1 0.0025 (±0.0002) 42.48 0.0027 (±0.0002) 34.03 0.0026 (±0.0002) 37.94 
2 0.0014 (±0.0002) -20.17 0.0017 (±0.0002) -17.56 0.0015 (±0.0002) -18.76 
3 0.0016 (±0.0002) -6.38 0.0019 (±0.0002) -5.51 0.0018 (±0.0001) -5.91 
4 0.0014 (±0.0002) -20.26 0.0017 (±0.0002) -17.78 0.0015 (±0.0002) -18.92 
5 0.0023 (±0.0003) 32.25 0.0025 (±0.0003) 24.86 0.0024 (±0.0003) 28.29 
6 0.0025 (±0.0002) 46.04 0.0028 (±0.0002) 36.92 0.0027 (±0.0002) 41.14 
7 0.0023 (±0.0003) 32.16 0.0025 (±0.0003) 24.65 0.0024 (±0.0003) 28.13 
8 0.0028 (±0.0003) 62.64 0.0031 (±0.0003) 50.34 0.0029 (±0.0003) 56.04 
9 0.0013 (±0.0003) -22.86 0.0016 (±0.0003) -19.97 0.0015 (±0.0002) -21.30 
10 0.0017 (±0.0002) -3.03 0.0020 (±0.0002) -2.79 0.0018 (±0.0001) -2.89 
11 0.0013 (±0.0003) -24.91 0.0016 (±0.0003) -21.98 0.0014 (±0.0002) -23.33 
12 0.0026 (±0.0003) 49.72 0.0028 (±0.0003) 38.77 0.0027 (±0.0003) 43.84 
13 0.0029 (±0.0003) 69.55 0.0032 (±0.0003) 55.95 0.0030 (±0.0003) 62.25 
14 0.0026 (±0.0003) 47.67 0.0028 (±0.0003) 36.77 0.0027 (±0.0003) 41.82 

Notes: For detailed description of scenarios, see Table 26. 
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Table 33.  Scenario prediction model outputs: ERMQ PCBs 
 

 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 0.0024 (±0.0002) - 0.0027 (±0.0002) - 0.0025 (±0.0002) - 
1 0.0028 (±0.0003) 18.57 0.0032 (±0.0003) 15.19 0.0030 (±0.0003) 16.79 
2 0.0014 (±0.0003) -40.69 0.0017 (±0.0003) -36.40 0.0016 (±0.0003) -38.39 
3 0.0024 (±0.0002) 2.14 0.0028 (±0.0002) 1.74 0.0026 (±0.0002) 1.94 
4 0.0014 (±0.0003) -40.13 0.0017 (±0.0003) -36.17 0.0016 (±0.0003) -38.00 
5 0.0020 (±0.0004) -17.21 0.0023 (±0.0004) -17.11 0.0021 (±0.0004) -17.14 
6 0.0030 (±0.0003) 25.62 0.0033 (±0.0003) 21.03 0.0031 (±0.0003) 23.19 
7 0.0020 (±0.0004) -16.65 0.0023 (±0.0004) -16.88 0.0021 (±0.0004) -16.75 
8 0.0030 (±0.0004) 27.60 0.0034 (±0.0003) 22.61 0.0032 (±0.0004) 24.96 
9 0.0012 (±0.0003) -50.11 0.0015 (±0.0003) -44.90 0.0013 (±0.0003) -47.31 
10 0.0026 (±0.0002) 8.77 0.0029 (±0.0002) 7.23 0.0027 (±0.0002) 7.97 
11 0.0011 (±0.0003) -52.34 0.0014 (±0.0003) -47.31 0.0013 (±0.0003) -49.63 
12 0.0019 (±0.0004) -17.59 0.0022 (±0.0004) -18.20 0.0021 (±0.0004) -17.89 
13 0.0033 (±0.0004) 41.29 0.0037 (±0.0004) 33.94 0.0035 (±0.0004) 37.39 
14 0.0019 (±0.0004) -19.82 0.0022 (±0.0004) -20.60 0.0020 (±0.0004) -20.21 

Notes: For detailed description of scenarios, see Table 26. 
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Table 34.  Scenario prediction model outputs: nekton abundance per area (individuals/m2) 
 

 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 0.014 (±0.002) - 0.034 (±0.005) - 0.022 (±0.002) - 
1 0.012 (±0.002) -13.49 0.029 (±0.005) -14.32 0.019 (±0.002) -13.90 
2 0.008 (±0.003) -43.47 0.019 (±0.007) -44.55 0.012 (±0.004) -44.01 
3 0.013 (±0.002) -3.85 0.032 (±0.004) -5.67 0.021 (±0.002) -4.76 
4 0.008 (±0.003) -43.62 0.019 (±0.007) -44.69 0.012 (±0.004) -44.15 
5 0.007 (±0.003) -49.27 0.017 (±0.006) -49.76 0.011 (±0.004) -49.51 
6 0.012 (±0.002) -13.71 0.029 (±0.005) -14.54 0.018 (±0.002) -14.12 
7 0.007 (±0.003) -49.40 0.017 (±0.006) -49.89 0.011 (±0.004) -49.64 
8 0.011 (±0.002) -17.01 0.028 (±0.005) -17.51 0.018 (±0.003) -17.26 
9 0.007 (±0.003) -50.88 0.016 (±0.008) -51.82 0.010 (±0.005) -51.35 
10 0.013 (±0.002) -4.10 0.032 (±0.004) -5.91 0.020 (±0.002) -5.00 
11 0.007 (±0.003) -51.14 0.016 (±0.008) -52.06 0.010 (±0.005) -51.60 
12 0.006 (±0.003) -57.72 0.014 (±0.007) -57.97 0.009 (±0.004) -57.84 
13 0.011 (±0.002) -17.45 0.028 (±0.005) -17.93 0.018 (±0.003) -17.69 
14 0.006 (±0.003) -57.94 0.014 (±0.007) -58.18 0.009 (±0.004) -58.06 

Notes: For detailed description of scenarios, see Table 26. 
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Table 35.  Scenario prediction model outputs: nekton species richness 
 

 Open Water Sites Tidal Creek Sites 

Scenario Prediction Percent 
Change Prediction Percent Change 

0 10.27 (±0.59) 0 11.79 (±0.56) 0 
1 10.13 (±0.57) -1.42 11.53 (±0.54) -2.26 
2 8.32 (±1.84) -19.03 8.98 (±1.77) -23.82 
3 10.18 (±0.58) -0.87 11.53 (±0.54) -2.26 
4 8.37 (±1.84) -18.48 8.98 (±1.77) -23.82 
5 8.32 (±1.84) -19.03 8.98 (±1.77) -23.82 
6 10.18 (±0.58) -0.87 11.53 (±0.54) -2.26 
7 8.37 (±1.84) -18.48 8.98 (±1.77) -23.82 
8 10.13 (±0.57) -1.42 11.53 (±0.54) -2.26 
9 7.84 (±2.28) -23.66 8.31 (±2.2) -29.49 
10 10.24 (±0.58) -0.32 11.53 (±0.54) -2.26 
11 7.95 (±2.28) -22.56 8.31 (±2.2) -29.49 
12 7.84 (±2.28) -23.66 8.31 (±2.2) -29.49 
13 10.24 (±0.58) -0.32 11.53 (±0.54) -2.26 
14 7.95 (±2.28) -22.56 8.31 (±2.2) -29.49 

Notes: For detailed description of scenarios, see Table 26. Separate nekton species 
richness models were run for tidal creek and open water sites due to differing 
sampling protocols; therefore, data were not summarized by all habitat types.  
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Table 36.  Scenario prediction model outputs: benthic abundance per area (individuals/m2) 
 

 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 2090.0 (±160.4) - 2083.2 (±160.3) - 2086.6 (±155.2) - 
1 2125.1 (±161.3) 1.68 2132.5 (±161.6) 2.37 2128.8 (±156.1) 2.02 
2 2106.9 (±280.8) 0.81 2113.7 (±286.1) 1.47 2110.3 (±280.2) 1.13 
3 2153.7 (±164.4) 3.04 2161.0 (±165.4) 3.74 2157.3 (±159.5) 3.39 
4 2135.2 (±281.6) 2.16 2142.0 (±287.4) 2.82 2138.6 (±281.2) 2.49 
5 2106.9 (±280.8) 0.81 2113.7 (±286.1) 1.47 2110.3 (±280.2) 1.13 
6 2153.7 (±164.4) 3.04 2161.0 (±165.4) 3.74 2157.3 (±159.5) 3.39 
7 2135.2 (±281.6) 2.16 2142.0 (±287.4) 2.82 2138.6 (±281.2) 2.49 
8 2125.1 (±161.3) 1.68 2132.5 (±161.6) 2.37 2128.8 (±156.1) 2.02 
9 2089.6 (±335.8) -0.02 2096.2 (±341.7) 0.63 2092.9 (±336.0) 0.30 
10 2182.6 (±170.0) 4.43 2189.8 (±171.7) 5.12 2186.2 (±165.5) 4.77 
11 2146.2 (±339.4) 2.69 2152.6 (±346.2) 3.33 2149.3 (±340.0) 3.01 
12 2089.6 (±335.8) -0.02 2096.2 (±341.7) 0.63 2092.9 (±336.0) 0.30 
13 2182.6 (±170.0) 4.43 2189.8 (±171.7) 5.12 2186.2 (±165.5) 4.77 
14 2146.2 (±339.4) 2.69 2152.6 (±346.2) 3.33 2149.3 (±340.0) 3.01 

Notes: For detailed description of scenarios, see Table 26. 
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Table 37.  Scenario prediction model outputs: benthic species richness 
 
 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 22.14 (±1.12) - 20.36 (±1.04) - 21.24 (±0.84) - 
1 25.01 (±2.21) 12.97 22.78 (±1.91) 11.91 23.88 (±1.90) 12.44 
2 19.85 (±1.20) -10.36 18.24 (±1.12) -10.38 19.03 (±0.98) -10.37 
3 22.46 (±1.14) 1.43 20.65 (±1.06) 1.42 21.54 (±0.86) 1.42 
4 20.13 (±1.21) -9.08 18.50 (±1.13) -9.11 19.30 (±0.99) -9.10 
5 22.42 (±2.14) 1.26 20.42 (±1.87) 0.30 21.4 (±1.87) 0.78 
6 25.37 (±2.24) 14.58 23.11 (±1.94) 13.50 24.22 (±1.92) 14.04 
7 22.74 (±2.17) 2.71 20.71 (±1.89) 1.72 21.71 (±1.89) 2.22 
8 26.21 (±2.96) 18.40 23.79 (±2.52) 16.87 24.98 (±2.60) 17.63 
9 19.20 (±1.28) -13.26 17.65 (±1.19) -13.28 18.42 (±1.07) -13.27 
10 22.78 (±1.18) 2.87 20.94 (±1.09) 2.85 21.84 (±0.89) 2.86 
11 19.76 (±1.31) -10.76 18.16 (±1.22) -10.80 18.95 (±1.10) -10.78 
12 22.74 (±2.80) 2.70 20.63 (±2.40) 1.35 21.67 (±2.49) 2.03 
13 26.97 (±3.06) 21.80 24.47 (±2.60) 20.20 25.70 (±2.69) 21.00 
14 23.39 (±2.87) 5.65 21.22 (±2.47) 4.24 22.29 (±2.55) 4.95 

Notes: For detailed description of scenarios, see Table 26. 
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Table 38. Scenario prediction model outputs: MAMBI 
 

 Open Water Sites Tidal Creek Sites All Sites 

Scenario Prediction Percent 
Change Prediction Percent 

Change Prediction Percent 
Change 

0 0.471 (±0.011) - 0.418 (±0.009) - 0.445 (±0.008) - 
1 0.566 (±0.028) 20.20 0.502 (±0.024) 20.26 0.535 (±0.026) 20.23 
2 0.453 (±0.013) -3.77 0.400 (±0.011) -4.26 0.427 (±0.010) -4.00 
3 0.472 (±0.011) 0.23 0.419 (±0.009) 0.25 0.446 (±0.008) 0.24 
4 0.455 (±0.013) -3.54 0.401 (±0.011) -4.01 0.428 (±0.010) -3.76 
5 0.549 (±0.029) 16.43 0.485 (±0.025) 16.00 0.517 (±0.027) 16.23 
6 0.567 (±0.028) 20.42 0.503 (±0.024) 20.51 0.536 (±0.026) 20.47 
7 0.550 (±0.029) 16.65 0.486 (±0.025) 16.25 0.518 (±0.026) 16.47 
8 0.603 (±0.038) 27.97 0.535 (±0.033) 28.05 0.569 (±0.035) 28.01 
9 0.448 (±0.014) -4.90 0.395 (±0.012) -5.54 0.422 (±0.011) -5.20 
10 0.473 (±0.011) 0.45 0.420 (±0.010) 0.51 0.447 (±0.008) 0.48 
11 0.450 (±0.014) -4.45 0.397 (±0.012) -5.03 0.424 (±0.011) -4.72 
12 0.580 (±0.039) 23.07 0.512 (±0.034) 22.52 0.546 (±0.036) 22.81 
13 0.605 (±0.038) 28.42 0.537 (±0.033) 28.56 0.571 (±0.035) 28.48 
14 0.582 (±0.039) 23.52 0.514 (±0.034) 23.02 0.548 (±0.036) 23.29 

Notes: For detailed description of scenarios, see Table 26. 
 
  



 206 

Table 39.  Population estimates for coastal South Carolina counties 
 
County Population (2000) Population (2018) Percent Change (%) 
Beaufort 122,306 188,715 +54.30 
Berkeley 143,410 221,091 +54.17 
Charleston 310,749 405,905 +30.62 
Colleton 38,304 37,660 -1.68 
Dorchester 96,757 160,647 +66.03 
Georgetown 56,080 62,249 +11.00 
Horry 198,019 344,147 +73.80 
Jasper 20,721 28,971 +39.82 
All Coastal Counties 986,346 1,449,385 +46.94 
South Carolina Total 4,024,223 5,084,127 +26.34 
Notes: Population data from US Census Bureau (2018).  
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Table 40.  HUC watershed summary 
 
HUC Digits Count Mean Area (min. - max.) (ha) 
8 19 262,213 (41,224-533,412) 
10 60 51,632 (16,321-122,611) 
12 264 9,581 (1,614-50,912) 
14 205 8,937 (217-22,003) 
All 548 83,091 (217-533,412) 
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Appendix A.  Hydrologic soil group descriptions 
 
Hydrologic Soil Group Description 
Group A deep, well drained sands or gravelly sands with high infiltration and low 

runoff rates 

Group B deep well drained soils with a moderately fine to moderately coarse texture 
and a moderate rate of infiltration and runoff 

Group C soils with a layer that impedes the downward movement of water or fine 
textured soils and a slow rate of infiltration 

Group D soils with a very slow infiltration rate and high runoff potential. This group 
is composed of clays that have a high shrink-swell potential, soils with a 
high water table, soils that have a clay pan or clay layer at or near the 
surface, and soils that are shallow over nearly impervious material 

Group A/D soils naturally have a very slow infiltration rate due to a high water table but 
will have high infiltration and low runoff rates if drained 

Group B/D soils naturally have a very slow infiltration rate due to a high water table but 
will have a moderate rate of infiltration and runoff if drained 

Group C/D soils naturally have a very slow infiltration rate due to a high water table but 
will have a slow rate of infiltration if drained 

Notes: Table adapted from NRCS soils layer downloaded from ArcGIS Online (NRCS, 2019). 
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Appendix B.  List of independent variables: weather and climate 
 
 
Weather Station Data 1 

 

Precipitation (1-7-day totals) (in)  
Days since rain   
Temperature (1-7-day averages) (°F)  
 
DAYMET 2 

 

Precipitation (10, 14, 30, 45, 60, 90-day totals) (cm)  
Temperature (10, 14, 30, 45, 60, 90-day averages) (°C)  
 
Seasonal Weather Data 3 

 

Fall Precipitation (cm) SON Seasonal Monthly Breakdown 
Winter Precipitation (cm) DJF SON Sep., Oct., Nov. (all from preceding year) 
Spring Precipitation (cm) MAM DJF Dec. (of preceding year), Jan., Feb.  
Summer Precipitation (cm) JJA MAM Mar., Apr., May 
Fall Temperature (cm) SON JJA Jun., Jul., Aug.  
Winter Temperature (°C) DJF  
Spring Temperature (°C) MAM  
Summer Temperature (°C) JJA  
Annual Precipitation (cm)  
Preceding Annual Precipitation (cm)  
Annual Temperature (°C)  
Preceding Annual Temperature (°C)  
 
Drought Indices 4 

 

PDSI (Palmer Drought Severity Index)  
PHDI (Palmer Hydrologic Drought Index)  
PMDI (Palmer Modified Drought Index)  
ZNDX (Palmer Z-Index)  
SPI (1, 2, 3, 6, 9, 12, or 24-month Standard Precipitation Index) 
 
Climate Teleconnections 5 

 

AMO (Atlantic Multidecadal Oscillation)  
AO (Arctic Oscillation)   
NAO (North Atlantic Oscillation)  
ONI (Oceanic Nino Index) 
 

 

Notes: 1 Data from nearest weather station from NOAA’s climate data online tool (NOAA NCEI) 
2 Data extracted from DAYMET gridded dataset (Thornton et al., 2018) 
3 Data summarized at Brookgreen Gardens, Charleston Int’l Airport, or Savannah Int’l Airport weather 
stations and compared to corresponding 30-year climate normals (1980-2010) to calculate difference 
from normal value (NOAA NCEI) 
4 NOAA NCDC 
5 Albers, 2019 
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Appendix C.  Drought indices descriptions 
 
Drought Index Description 
Palmer Drought Severity Index 
(PDSI) 

The PDSI is calculated using monthly precipitation, temperature and 
soil storage. The PDSI was developed in the 1960’s for agricultural 
purposes and is the oldest index in use today.  

Palmer Modified Drought Index 
(PMDI) 

A modified version of the PDSI to better capture transitions between 
wet and dry periods. 

Palmer Hydrologic Drought 
Index (PHDI) 

Based upon the PDSI with a focus on longer-term drought 
conditions that may impact water storage and groundwater. 

Palmer Z-Index (ZNDX) Derivative of the PDSI with a focus on short-term drought 
conditions. 

Standard Precipitation Index 
(SP01, SP02, SP03 1,…) 

Derived from long-term precipitation data and is available for 
multiple timescales (1 to 24-months) 

Notes: For all index values, positive numbers indicate wet conditions and negative numbers indicate 
drought conditions. Descriptions from the Handbook of Drought Indicators and Indices (WMO and 
GWP, 2016).  
1 Number following SP-- represents number of preceding months used in its calculation 
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Appendix D. Climate teleconnection descriptions 
 
Climate Teleconnection  Description 
El Niño-Southern Oscillation (ONI) El Niño years (ONI≥0.5) correlate with wet and cool 

winters in the Southeast and reduced Atlantic tropical 
cyclone activity. La Niña years (ONI≤-0.5) correlate with 
warm and dry winters in the South Carolina and increased 
Atlantic tropical cyclone activity (Mizzell and Simmons, 
2015). 

Atlantic Multidecadal Oscillation (AMO) The AMO represents long-term (20-40 year) trends in sea 
surface temperature in the northern Atlantic Ocean. The 
AMO has been in the positive (warming) phase since the 
1990’s. Positive AMO phases are often associated with 
more frequent and severe droughts for the continental US; 
however, coastal South Carolina may experience greater 
rainfall due to increased hurricane activity during positive 
AMO phases (Curtis, 2007).  

North Atlantic Oscillation (NAO) The NAO represents fluctuations in atmospheric pressure 
in the northern Atlantic Ocean. The NAO is more often 
associated with weather impacts in western Europe; 
however, positive NAO phases have been associated with 
warmer and wetter winters and negative NAO phases with 
cooler and drier winters in the southeastern US (NCSU 
NCCO).  

Arctic Oscillation (AO) The AO is closely related to the NAO and influences the 
trajectory of the jet stream across the Arctic. The effects of 
the AO are similar to the NAO. Positive AO phases are 
associated with warmer winters and negative AO phases 
with cooler winters in the southeastern US (NCSU NCCO). 
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Appendix E.  List of dependent variables: SCECAP 1 

 
 
Water Quality 
Enterococcus spp. (MPN/100mL) 2 
Fecal coliform (MPN/100mL) 
 
Sediment Quality 
DDT (ng/L) 3 
Metals (ug/L) 
PAHs (ng/L) 
PBDEs (ng/L) 4 
PCBs (ng/L) 
All Contaminants (ERMQ) 5 
DDT (ERMQ) 3 
Metals (ERMQ) 
PAHs (ERMQ) 
PCBs (ERMQ) 
 
Biological Quality 
Nekton Abundance (individuals/m2) 
Nekton Species Richness 6 
Benthic Abundance (individuals/m2) 
BIBI 7 
MAMBI 8 

 
Notes: 1 South Carolina Estuarine and Coastal Assessment Program (Sanger et al., 2016) 
2 Data availability beginning in 2007 
3 Total DDT, including its metabolites (e.g., DDD and DDE) 
4 Data availability beginning in 2003 
5 Effects Range Median Quotient (Long et al., 1995) 
6 Data separated by habitat type due to differing trawl sampling protocols between tidal creek and open 
water sites (Sanger et al., 2016) 
7 Benthic Index of Biotic Integrity (Van Dolah, 1999) 
8 Multivariate AZTI’s Marine Biotic Index (Muxika, 2007) 
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Appendix F.  List of independent variables: landcover and land use 
 
 
NLCD 1, HGB 

 
 

Barren Land (%†) A Condensed Landcover Categories 
Cultivated Crops (%†) A A Agricultural 
Deciduous Forest (%†) F D Developed All 
Developed Open Spaces (%†) D,DL DL Developed Low 
Emergent Herbaceous Wetlands (%) M DH Developed High 
Evergreen Forest (%†) F F Forest 
Hay-Pasture (%†) A M Marsh 
Herbaceous (%†) F W Water 
High Intensity Developed (%†) D,DH  
Low Intensity Developed (%†) D,DL  
Medium Intensity Developed (%†) D,DH  
Mixed Forest (%†) F  
Open Water (%) W  
Shrub-Scrub (%†) F  
Woody Wetlands (%†) F  
 
NLCD Urban Imperviousness 2, HGB 

 

Upland Impervious Cover (%†)  
 
US Census 3, HG 

 

Population  
Population Density (persons per ha)  
 
USDA Hydrologic Soil Groups 4, HG 

 

Group A (%†) WD Condensed Soil Categories 
Group B (%†) WD WD Well Drained 
Group C (%†) PD PD Poorly Drained 
Group D (%†) PD  
Group A/D (%†) PD  
Group B/D (%†) PD  
Group C/D (%†) PD  
 
SCDNR Stormwater Pond Dataset 5, H 

 

All Ponds (#/ha, %)  
Commercial Ponds (#/ha, %)  
Golf Ponds (#/ha, %)  
Mixed Ponds (#/ha, %)  
Residential Ponds (#/ha, %) 
 

 

Notes: H Analyzed by HUC watershed; HG analyzed by HUC watershed and grid cell; HGB analyzed by 
HUC watershed, grid cell, and buffer 
† Calculated as percentage of upland area (i.e., non-water and non-marsh landcover) 
1 National Land Cover Dataset (Yang et al., 2018). Data available for years 2001,2003, 2006, 2008, 2011, 
2013, 2016 
2 National Landcover Dataset’s urban imperviousness data (Yang et al., 2018). Data available for years 
2001, 2006, 2011, 2016 
3 2010 US Census Blocks’ population data (source) 
4 NRCS 2019 
5 Cotti-Rausch et al., 2018 
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Appendix G.  List of independent variables: physical habitat 1 

 
 
Structure 
Habitat Type (open water or tidal creek) 
Channel Depth (m) 
Channel Width (m) 2 
 
Chemistry 
Dissolved Oxygen (mg/L) 
pH 
Salinity (ppt) 
Water Temperature (°C) 
 
Sediment Composition 
Silt-Clay Content (%) 
Total Organic Carbon Sediment (mg/L) 
 
Notes: 1 Data collected at each SCECAP station (Sanger et al., 2016) 
2 Estimated via satellite imagery 
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Appendix H.  Area of coastal South Carolina that experienced a change in NLCD 1 landcover 
type between 2001 and 2016. Percent of total county area in parentheses.  
 

County Change in Landcover 
(2001-2016) 

No Change in Landcover 
(2001-2016) 

Total Area 

Beaufort 7,410 ha (4.6%) 152,920 ha (95.4%) 160,330 ha 
Berkeley 9,074 ha (2.9%) 307,101 ha (97.1%) 316,175 ha 
Charleston 10,254 ha (4.1%) 242,377 ha (96.0%) 252,631 ha 
Colleton 9,545 ha (3.4%) 268,583 ha (96.6%) 278,128 ha 
Dorchester 5,160 ha (3.5%) 143,863 ha (96.5%) 149,023 ha 
Georgetown 6,388 ha (2.9%) 212,775 ha (97.1%) 219,163 ha 
Horry 16,988 ha (5.7%) 279,301 ha (94.3%) 296,289 ha 
Jasper 7,329 ha (4.2%) 165,339 ha (95.8%) 172,668 ha 
Total 72,148 ha (3.9%) 1,772,259 ha (96.1%) 1,844,407 ha 

Notes: 1 National Land Cover Dataset (Yang et al., 2018) 
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Appendix I.  NLCD 1 landcover changes observed in coastal South Carolina counties between 
2001 and 2016. Data shown as area gained, area lost, and net change for each landcover   
category 2.  
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High Intensity Developed (ha) 
 
Gain 987 1,469 1,929 98 752 331 2,923 361 8,850 
Loss 0 0 0 0 0 0 0 0 0 
Net  987 1,469 1,929 98 752 331 2,923 361 8,850 
 
Low Intensity Developed (ha) 
 
Gain 2,812 2,607 2,686 134 1,517 803 6,620 867 18,046 
Loss -227 -326 -823 -40 -182 -170 -1,059 -25 -2,852 
Net 2,585 2,281 1,863 94 1,335 633 5,561 842 15,194 
 
Agriculture (ha) 
 
Gain 214 261 126 372 280 113 724 504 2,594 
Loss -727 -1,289 -2,230 -2,036 -981 -509 -1,832 -868 -10,472 
Net -513 -1,028 -2,104 -1,664 -701 -396 -1,108 -364 -7,878 
 
Forested Upland (ha) 
 
Gain 1,157 681 1,947 1,976 713 439 948 816 8,677 
Loss -3,211 -3,272 -2,649 -664 -1,869 -1,034 -7,080 -1,647 -21,426 
Net -2,054 -2,591 -702 1,312 -1,156 -595 -6,132 -831 -12,749 
 
Forested Wetland (ha) 
 
Gain 737 1,058 1,599 2,347 619 1,993 1,850 2,832 13,035 
Loss -969 -2,379 -1,914 -3,272 -1,400 -2,003 -4,741 -1,349 -18,027 
Net -232 -1,321 -315 -925 -781 -10 -2,891 1,483 -4,992 
 
Marsh (ha) 
 
Gain 1,016 1,664 1,094 2,551 558 1,474 1,779 1,366 9,444 
Loss -809 -1,413 -2,096 -3,237 -684 -2,340 -2,009 -2,901 -3,882 
Net 207 251 -1,002 -686 -126 -866 -230 -1,535 5,562 
 
Water (ha) 
 
Gain 487 1,334 873 2,067 721 1,235 2,144 583 11,502 
Loss -1,467 -395 -542 -296 -44 -332 -267 -539 -15,489 
Net -980 939 331 1,771 677 903 1,877 44 -3,987 

Notes: 1 National Land Cover Dataset (Yang et al., 2018) 
2 Condensed landcover categories (Appendix F) 
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Appendix J.  Link to author’s GitHub profile. The processed data and R scripts used in this 
project’s analyses and data visualization are available in the ‘thesis’ project folder on the author’s 
GitHub profile. 
 
 
https://github.com/WhateverLloyd/thesis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


